Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Radiology ; 289(1): 128-137, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30063191

RESUMO

Purpose To compare biparametric contrast-free radiomic machine learning (RML), mean apparent diffusion coefficient (ADC), and radiologist assessment for characterization of prostate lesions detected during prospective MRI interpretation. Materials and Methods This single-institution study included 316 men (mean age ± standard deviation, 64.0 years ± 7.8) with an indication for MRI-transrectal US fusion biopsy between May 2015 and September 2016 (training cohort, 183 patients; test cohort, 133 patients). Lesions identified by prospective clinical readings were manually segmented for mean ADC and radiomics analysis. Global and zone-specific random forest RML and mean ADC models for classification of clinically significant prostate cancer (Gleason grade group ≥ 2) were developed on the training set and the fixed models tested on an independent test set. Clinical readings, mean ADC, and radiomics were compared by using the McNemar test and receiver operating characteristic (ROC) analysis. Results In the test set, radiologist interpretation had a per-lesion sensitivity of 88% (53 of 60) and specificity of 50% (79 of 159). Quantitative measurement of the mean ADC (cut-off 732 mm2/sec) significantly reduced false-positive (FP) lesions from 80 to 60 (specificity 62% [99 of 159]) and false-negative (FN) lesions from seven to six (sensitivity 90% [54 of 60]) (P = .048). Radiologist interpretation had a per-patient sensitivity of 89% (40 of 45) and specificity of 43% (38 of 88). Quantitative measurement of the mean ADC reduced the number of patients with FP lesions from 50 to 43 (specificity 51% [45 of 88]) and the number of patients with FN lesions from five to three (sensitivity 93% [42 of 45]) (P = .496). Comparison of the area under the ROC curve (AUC) for the mean ADC (AUCglobal = 0.84; AUCzone-specific ≤ 0.87) vs the RML (AUCglobal = 0.88, P = .176; AUCzone-specific ≤ 0.89, P ≥ .493) showed no significantly different performance. Conclusion Quantitative measurement of the mean apparent diffusion coefficient (ADC) improved differentiation of benign versus malignant prostate lesions, compared with clinical assessment. Radiomic machine learning had comparable but not better performance than mean ADC assessment. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem , Neoplasias da Próstata/classificação , Neoplasias da Próstata/patologia , Curva ROC , Estudos Retrospectivos
2.
J Magn Reson Imaging ; 46(2): 604-616, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28152264

RESUMO

PURPOSE: To assess radiomics as a tool to determine how well lesions found suspicious on breast cancer screening X-ray mammography can be categorized into malignant and benign with unenhanced magnetic resonance (MR) mammography with diffusion-weighted imaging and T2 -weighted sequences. MATERIALS AND METHODS: From an asymptomatic screening cohort, 50 women with mammographically suspicious findings were examined with contrast-enhanced breast MRI (ceMRI) at 1.5T. Out of this protocol an unenhanced, abbreviated diffusion-weighted imaging protocol (ueMRI) including T2 -weighted, (T2 w), diffusion-weighted imaging (DWI), and DWI with background suppression (DWIBS) sequences and corresponding apparent diffusion coefficient (ADC) maps were extracted. From ueMRI-derived radiomic features, three Lasso-supervised machine-learning classifiers were constructed and compared with the clinical performance of a highly experienced radiologist: 1) univariate mean ADC model, 2) unconstrained radiomic model, 3) constrained radiomic model with mandatory inclusion of mean ADC. RESULTS: The unconstrained and constrained radiomic classifiers consisted of 11 parameters each and achieved differentiation of malignant from benign lesions with a .632 + bootstrap receiver operating characteristics (ROC) area under the curve (AUC) of 84.2%/85.1%, compared to 77.4% for mean ADC and 95.9%/95.9% for the experienced radiologist using ceMRI/ueMRI. CONCLUSION: In this pilot study we identified two ueMRI radiomics classifiers that performed well in the differentiation of malignant from benign lesions and achieved higher performance than the mean ADC parameter alone. Classification was lower than the almost perfect performance of a highly experienced breast radiologist. The potential of radiomics to provide a training-independent diagnostic decision tool is indicated. A performance reaching the human expert would be highly desirable and based on our results is considered possible when the concept is extended in larger cohorts with further development and validation of the technique. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:604-616.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste/química , Imagem de Difusão por Ressonância Magnética , Mamografia , Idoso , Biópsia , Mama/diagnóstico por imagem , Detecção Precoce de Câncer , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Radiologia , Estudos Retrospectivos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA