Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cytogenet Genome Res ; 162(5): 262-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36689925

RESUMO

Mitotic chromosomes of butterflies, which look like dots or short filaments in most published data, are generally considered to lack localised centromeres and thus to be holokinetic. This particularity, observed in a number of other invertebrates, is associated with meiotic particularities known as "inverted meiosis," in which the first division is equational, i.e., centromere splitting-up and segregation of sister chromatids instead of homologous chromosomes. However, the accurate analysis of butterfly chromosomes is difficult because (1) their size is very small, equivalent to 2 bands of a mammalian metaphase chromosome, and (2) they lack satellite DNA/heterochromatin in putative centromere regions and therefore marked primary constrictions. Our improved conditions for basic chromosome preparations, here applied to 6 butterfly species belonging to families Nymphalidae and Pieridae challenges the holocentricity of their chromosomes: in spite of the absence of primary constrictions, sister chromatids are recurrently held together at definite positions during mitotic metaphase, which makes possible to establish karyotypes composed of acrocentric and submetacentric chromosomes. The total number of chromosomes per karyotype is roughly inversely proportional to that of non-acrocentric chromosomes, which suggests the occurrence of frequent robertsonian-like fusions or fissions during evolution. Furthermore, the behaviour and morphological changes of chromosomes along the various phases of meiosis do not seem to differ much from those of canonical meiosis. In particular, at metaphase II chromosomes clearly have 2 sister chromatids, which refutes that anaphase I was equational. Thus, we propose an alternative mechanism to holocentricity for explaining the large variations in chromosome numbers in butterflies: (1) in the ancestral karyotype, composed of about 62 mostly acrocentric chromosomes, the centromeres, devoid of centromeric heterochromatin/satellite DNA, were located at contact with telomeric heterochromatin; (2) the instability of telomeric heterochromatin largely contributed to drive the multiple rearrangements, principally chromosome fusions, which occurred during butterfly evolution.


Assuntos
Borboletas , Humanos , Animais , Borboletas/genética , Heterocromatina , DNA Satélite , Cromossomos , Centrômero , Meiose , Cromátides , Cariotipagem , Mamíferos/genética
2.
iScience ; 26(8): 107338, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520734

RESUMO

Cyanobacteria have a long evolutionary history, well documented in marine rocks. They are also abundant and diverse in terrestrial environments; however, although phylogenies suggest that the group colonized land early in its history, paleontological documentation of this remains limited. The Rhynie chert (407 Ma), our best preserved record of early terrestrial ecosystems, provides an opportunity to illuminate aspects of cyanobacterial diversity and ecology as plants began to radiate across the land surface. We used light microscopy and super-resolution confocal laser scanning microscopy to study a new population of Rhynie cyanobacteria; we also reinvestigated previously described specimens that resemble the new fossils. Our study demonstrates that all are part of a single fossil species belonging to the Hapalosiphonaceae (Nostocales). Along with other Rhynie microfossils, these remains show that the accommodation of morphologically complex cyanobacteria to terrestrial ecosystems transformed by embryophytes was well underway more than 400 million years ago.

3.
PLoS One ; 16(3): e0247849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651837

RESUMO

335-330 million-year-old cherts from the Massif Central, France, contain exceptionally well-preserved remains of an early forest ecosystem, including plants, fungi and other microorganisms. Here we reinvestigate the original material prepared by Renault and Roche from collections of the Muséum National d'Histoire Naturelle, Paris, and present a re-evaluation of Oochytrium lepidodendri (Renault 1894), originally described as a zoosporic fungus. Confocal laser scanning microscopy (CLSM) was used to study the microfossils, enabling us in software to digitally reconstruct them in three-dimensional detail. We reinterpret O. lepidodendri as a pseudofungus and favour placement within the oomycetes, a diverse clade of saprotrophs and both animal and plant parasites. Phylogenetically, O. lepidodendri appears to belong to a group of oomycetes distinct from those previously described from Paleozoic rocks and most likely related to the Peronosporales s.l. This study adds to our knowledge of Paleozoic eukaryotic diversity and reinforces the view that oomycetes were early and diverse constituents of terrestrial biotas, playing similar ecological roles to those they perform in modern ecosystems.


Assuntos
Ecossistema , Florestas , Oomicetos , Filogenia , França , Microscopia Confocal
4.
Malar J ; 9: 189, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20591164

RESUMO

BACKGROUND: The Plasmodium falciparum PfA-M1 aminopeptidase, encoded by a single copy gene, displays a neutral optimal activity at pH 7.4. It is thought to be involved in haemoglobin degradation and/or invasion of the host cells. Although a series of inhibitors developed against PfA-M1 suggest that this enzyme is a promising target for therapeutic intervention, the biological function(s) of the three different forms of the enzyme (p120, p96 and p68) are not fully understood. Two recent studies using PfA-M1 transfections have also provided conflicting results on PfA-M1 localization within or outside the food vacuole. Alternative destinations, such as the nucleus, have also been proposed. METHODS: By using a combination of techniques, such as cellular and biochemical fractionations, biochemical analysis, mass-spectrometry, immunofluorescence assays and live imaging of GFP fusions to various PfA-M1 domains, evidence is provided for differential localization and behaviour of the three different forms of PfA-M1 in the infected red blood cell which had not been established before. RESULTS: The high molecular weight p120 form of PfA-M1, the only version of the protein with a hydrophobic transmembrane domain, is detected both inside the parasite and in the parasitophorous vacuole while the processed p68 form is strictly soluble and localized within the parasite. The transient intermediate and soluble p96 form is localized at the border of parasitophorous vacuole and within the parasite in a compartment sensitive to high concentrations of saponin. Upon treatment with brefeldin A, the PfA-M1 maturation is blocked and the enzyme remains in a compartment close to the nucleus. CONCLUSIONS: The PfA-M1 trafficking/maturation scenario that emerges from this data indicates that PfA-M1, synthesized as the precursor p120 form, is targeted to the parasitophorous vacuole via the parasite endoplasmic reticulum/Golgi, where it is converted into the transient p96 form. This p96 form is eventually redirected into the parasite to be converted into the processed p68 form that is only marginally delivered to the parasite food vacuole. These results provide insights on PfA-M1 topology regarding key compartments of the infected red blood cells that have important implications for the development of inhibitors targeting this plasmodial enzyme.


Assuntos
Aminopeptidases/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/enzimologia , Transfecção , Vacúolos/enzimologia , Zinco/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Vacúolos/parasitologia
5.
Heliyon ; 6(7): e04513, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32715146

RESUMO

In the shells of the Pelecypods belonging to the Pinnidae family, the calcareous prismatic units of the outer layer are long-standing references for biomineralization studies. To elucidate how the mechanism of prism formation enables both shell elongation and thickness increase, a top-down structural analysis of these classical "simple prisms" has been carried out, taking advantage of shell sampling on actively mineralizing animals. Particular attention was paid to the morphological and structural patterns of the calcareous units sequentially produced at the margins of the growth lamellae. This pre-prismatic part of the shell allows for studying the mineralizing stages not taken into account in prism reconstructions based on samples taken from older areas of the shell. Examination of the microstructural sequence shows that within the actively mineralizing area of the shell, a step-by-step structuring process is continuously running, providing a renewed view of prism formation as it makes obvious the progressive occurrence of their specific patterns. Given the critically endangered status of the species, a better knowledge of the mineralization process associated to shell growth may become handy for future studies aimed at understanding the health status of individuals based on their shell records.

6.
Front Microbiol ; 11: 1060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547514

RESUMO

Leishmania infantum is a flagellated protozoan and one of the main causative agents of visceral leishmaniasis. This disease usually affects the human reticuloendothelial system, can cause death and available therapies may lead to serious side effects. Since it is a neglected tropical disease, the incentives for the development of new drugs are insufficient. It is important to know Leishmania virulence factors that contribute most to the disease in order to develop drugs. In the present work, we have produced L. infantum prolyl oligopeptidase (rPOPLi) in Escherichia coli, and investigated its biochemical properties as well as the effect of POP inhibitors on its enzymatic activity and on the inhibition of the macrophage infection by L. infantum. The optimal activity occurred at pH 7.5 and 37°C in the presence of DTT, the latter increased rPOPLi catalytic efficiency 5-fold on the substrate N-Suc-Gly-Pro-Leu-Gly-Pro-AMC. The enzyme was inhibited by TPCK, TLCK and by two POP specific inhibitors, Z-Pro-prolinal (ZPP, IC50 4.2 nM) and S17092 (IC50 3.5 nM). Besides being a cytoplasmic enzyme, POPLi is also found in punctuate structures within the parasite cytoplasm or associated with the parasite plasma membrane in amastigotes and promastigotes, respectively. Interestingly, S17092 and ZPP prevented parasite invasion in murine macrophages, supporting the involvement of POPLi in the invasive process of L. infantum. These data suggest POPLi as a virulence factor that offers potential as a target for designing new antileishmanial drugs.

7.
J Struct Biol ; 165(3): 190-5, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19121399

RESUMO

Formation of nacre (mother-of-pearl) is a biomineralization process of fundamental scientific as well as industrial importance. However, the dynamics of the formation process is still not understood. Here, we use scanning electron microscopy and high spatial resolution ion microprobe depth-profiling to image the full three-dimensional distribution of organic materials around individual tablets in the top-most layer of forming nacre in bivalves. Nacre formation proceeds by lateral, symmetric growth of individual tablets mediated by a growth-ring rich in organics, in which aragonite crystallizes from amorphous precursors. The pivotal role in nacre formation played by the growth-ring structure documented in this study adds further complexity to a highly dynamical biomineralization process.


Assuntos
Estruturas Animais/crescimento & desenvolvimento , Estruturas Animais/ultraestrutura , Carbonato de Cálcio/metabolismo , Pinctada/crescimento & desenvolvimento , Pinctada/ultraestrutura , Estruturas Animais/química , Animais , Carbono/análise , Cristalização , Hidrogênio/análise , Microscopia Eletrônica de Varredura , Minerais/metabolismo , Modelos Biológicos , Espectrometria de Massa de Íon Secundário , Enxofre/análise
8.
Malar J ; 3: 49, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15588325

RESUMO

BACKGROUND: Sphingolipids are key molecules regulating many essential functions in eukaryotic cells and ceramide plays a central role in sphingolipid metabolism. A sphingolipid metabolism occurs in the intraerythrocytic stages of Plasmodium falciparum and is associated with essential biological processes. It constitutes an attractive and potential target for the development of new antimalarial drugs. METHODS: The anti-Plasmodium activity of a series of ceramide analogs containing different linkages (amide, methylene or thiourea linkages) between the fatty acid part of ceramide and the sphingoid core was investigated in culture and compared to the sphingolipid analog PPMP (d,1-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol). This analog is known to inhibit the parasite sphingomyelin synthase activity and block parasite development by preventing the formation of the tubovesicular network that extends from the parasitophorous vacuole to the red cell membrane and delivers essential extracellular nutrients to the parasite. RESULTS: Analogs containing methylene linkage showed a considerably higher anti-Plasmodium activity (IC50 in the low nanomolar range) than PPMP and their counterparts with a natural amide linkage (IC50 in the micromolar range). The methylene analogs blocked irreversibly P. falciparum development leading to parasite eradication in contrast to PPMP whose effect is cytostatic. A high sensitivity of action towards the parasite was observed when compared to their effect on the human MRC-5 cell growth. The toxicity towards parasites did not correlate with the inhibition by methylene analogs of the parasite sphingomyelin synthase activity and the tubovesicular network formation, indicating that this enzyme is not their primary target. CONCLUSIONS: It has been shown that ceramide analogs were potent inhibitors of P. falciparum growth in culture. Interestingly, the nature of the linkage between the fatty acid part and the sphingoid core considerably influences the antiplasmodial activity and the selectivity of analogs when compared to their cytotoxicity on mammalian cells. By comparison with their inhibitory effect on cancer cell growth, the ceramide analogs might inhibit P. falciparum growth through modulation of the endogenous ceramide level.


Assuntos
Ceramidas/farmacologia , Eritrócitos/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Ceramidas/química , Ceramidas/toxicidade , Humanos , Microscopia de Fluorescência , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Esfingolipídeos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
9.
Cell Motil Cytoskeleton ; 62(4): 195-209, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16240430

RESUMO

Lecudina tuzetae is a parasitic protozoan (Gregarine, Apicomplexa) living in the intestine of a marine polychaete annelid, Nereis diversicolor. Using electron and fluorescence microscopy, we have characterized the dynamic changes in microtubule organization during the sexual phase of the life cycle. The gametocyst excreted from the host worm into seawater consists of two (one male and one female) gamonts in which cortical microtubule arrays are discernible. Each gamont undergoes multiple nuclear divisions without cytokinesis, resulting in the formation of large multinucleate haploid cells. After cellularization, approximately 1000 individual gametes are produced from each gamont within 24 h. Female gametes are spherical and contain interphase cytoplasmic microtubule arrays emanating from a gamma-tubulin-containing site. In male gametes, both interphase microtubules and a flagellum with "6 + 0" axonemal microtubules extend from the same microtubule-organizing site. At the beginning of spore formation, each zygote secretes a wall to form a sporocyst. Following meiotic and mitotic divisions, each sporocyst gives rise to eight haploid cells that ultimately differentiate into sporozoites. The ovoid shaped sporocyst is asymmetric and forms at least two distinctive microtubule arrays: spindle microtubules and microtubule bundles originating from the protruding apical end corresponding to the dehiscence pole of the sporocyst. Because antibodies raised against mammalian centrosome components, such as gamma-tubulin, pericentrin, Cep135, and mitosis-specific phosphoproteins, react strongly with the microtubule-nucleating sites of Lecudina, this protozoan is likely to share common centrosomal antigens with higher eukaryotes.


Assuntos
Apicomplexa/crescimento & desenvolvimento , Apicomplexa/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Poliquetos/parasitologia , Tubulina (Proteína)/metabolismo , Animais , Anticorpos/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Divisão do Núcleo Celular , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Reações Cruzadas , Diploide , Feminino , Fertilização , Flagelos/metabolismo , Flagelos/ultraestrutura , Imunofluorescência , Células Germinativas/metabolismo , Células Germinativas/ultraestrutura , Haploidia , Interações Hospedeiro-Parasita , Interfase , Estágios do Ciclo de Vida , Masculino , Meiose , Microscopia de Fluorescência , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Modelos Biológicos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Zigoto/metabolismo , Zigoto/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA