Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7700): 231-234, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618821

RESUMO

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.


Assuntos
Altitude , Biodiversidade , Mapeamento Geográfico , Aquecimento Global/estatística & dados numéricos , Plantas/classificação , Europa (Continente) , História do Século XX , História do Século XXI , Temperatura
2.
Proc Natl Acad Sci U S A ; 117(39): 24345-24351, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32900958

RESUMO

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


Assuntos
Plantas/classificação , Sequestro de Carbono , Mudança Climática , Ecossistema , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química
3.
Am J Bot ; 100(9): 1790-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23997207

RESUMO

PREMISE OF THE STUDY: Wild-boar soil disturbance (i.e., rooting) increases the abundance of some species of geophytes (i.e., plants with underground renewal buds) in upland meadows. However, the mechanisms that could lead to such enhanced prevalence remain unexplored. • METHODS: We analyzed the effects of wild-boar disturbance on the size, nutrient (N, P, K, C, and total ash), and nonstructural carbohydrate (soluble sugars, starch plus fructans, and total nonstructural carbohydrate) content of the storage organs of five taxa of upland geophytes. Results were explored in relation to the nutrient availability (total N, available P, and K) in the soil. • KEY RESULTS: Wild-boar rooting increased the size and the nutrient content of the storage organs of geophytes. Such enhanced storage was further promoted by rooting recurrence and intensity. Although we could not detect a direct impact of rooting on soil nutrient concentrations, plants were clearly N limited and such limitation was ameliorated in areas rooted by wild boar. Furthermore, plant-soil interactions for N were different in rooted areas, where plant N-concentrations responded positively to soil N. • CONCLUSIONS: Geophytes growing in rooted areas have an increased nutrient value, which may promote the revisit of wild boars to previously rooted areas, with further positive feed-back effects on plant quality. This plant-animal interaction may shape upland geophyte communities.


Assuntos
Iridaceae/metabolismo , Liliaceae/metabolismo , Raízes de Plantas/metabolismo , Animais , Comportamento Animal , Carboidratos/análise , Carbono/análise , Ecossistema , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Estresse Mecânico , Sus scrofa
4.
Plants (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932825

RESUMO

Small evergreen shrubs of the family Fabaceae represent a large proportion of current Mediterranean mountain vegetation. Their low pastoral value and tendency for encroachment makes these plants undesirable. In this paper, the thermal and chemical characteristics of Echinospartum horridum, a thorny cushion-shaped dwarf shrub native to the French Central Massif and the Pyrenees (particularly dominant in the shrublands of the Pyrenees), have been analyzed with a view to its valorization. Although the higher and lower heating values of the biomass from E. horridum met the ISO 17225-2:2014 requirements for its use in pellets, the ash content was slightly above the upper limit, so it would not comply with the normative for its acceptable use as a fuel. Nevertheless, the presence of high added-value flavonoids and lignans in its extracts, which are receiving increasing recent interest as efficient anti-tumor drugs and antivirals, may open the door to the valorization of this shrub for pharmacological applications.

5.
Sci Total Environ ; 734: 139121, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464396

RESUMO

The two most widely extended mountain grasslands in Europe (Nardus-mat grasslands and chalk grasslands) are distributed forming complex patterns. In the Ordesa and Monte Perdido National Park (Central Pyrenees, NE-Spain), they grow as secondary pastures within the treeline ecotone at the subalpine belt. This work aims to show the influence of soil properties on the spatial distribution of these pastures, under a dynamic geomorphology. Soils are sampled under both grasslands, which grow on different cumulative levels: Nardus-mat grasslands in the upper level (L1) and chalk grasslands in the lower level (L2). Soils in L1 have a significantly higher acidity, lower soluble ions and exchangeable calcium content than those in L2, reflecting a more intense leaching process, consistent with a longer period of slope stability. Qualitative differences are detected in the soil organic matter of the soil, using carbon and nitrogen isotopes, lighter in L2 soils than in L1 soils, due to a higher proportion of legumes growing in L2 (chalk grasslands). Soils in L1 and L2 shared many physical properties, such as a fine and homogeneous texture in the whole profile (silty clay or silty clay loam), and high aggregate stability and porosity in the topsoil. In contrast, the soils in L2 are shallower than in L1, which reduces their water-holding capacity. The soil is classified as Orthoeutric Cambisol (Clayic, Humic) in L1 but its rejuvenation, by gully erosion, transforms it into an Hypereutric Leptosol (Loamic, Ochric) in L2 (Typic Haplocryept and Lithic Haplocryept, respectively by Soil Taxonomy system). Definitely, the distribution of both grasslands for the studied area is linked to two cumulative levels of different ages, which in turn is strongy related to different soil properties.

6.
Hortic Res ; 7: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257230

RESUMO

The present work reports the discovery and the complete characterisation of an ancient cultivated rose variety found growing in a private garden in the southwest of the Principality of Asturias (northern Spain). The variety is here given the name Narcea. The majority of roses currently cultivated belong to the so-called group of 'Modern Roses', all of which were obtained after 1867 via artificial crosses and improvement programmes. All are destined for ornamental use. Until the 19th century, the great majority of the many ancient cultivated roses in Europe were used in perfumery and cosmetics, or had medicinal uses. Rosa damascena and Rosa centifollia are still grown and used by the French and Bulgarian perfume industries. The Asturian Massif of the Cantabrian Mountain Range provides a natural habitat for some 75% of the wild members of the genus Rosa, but until now there was no evidence that this area was home to ancient cultivated roses. A complete botanical description is here provided for a discovered ancient rose. It is also characterised according to a series of sequence tagged microsatellite sites, and its agronomic features are reported. In addition, a histological description (optical and scanning electronic microscope studies) of the petals is offered, along with an analysis of the volatile compounds present in these organs as determined by solid phase microextraction and gas chromatography-mass spectroscopy. The results reveal the uniqueness of this ancient type of rose and suggest it may be of interest to the perfume industry.

7.
Nat Commun ; 11(1): 3486, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661354

RESUMO

Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA