Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Phys Chem Chem Phys ; 26(2): 1225-1233, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38099816

RESUMO

The combination between photoactive molecules and inorganic structures is of great interest for the development of advanced materials in the field of optics. Particularly, zeotypes with extra-large pore size are attractive because they allow the encapsulation of bulky dyes. The microporous aluminophoshate Mg-ITQ-51 (IFO-type structure) represents an ideal candidate because of the synergic combination of two crucial features: the IFO framework itself, which is composed of non-interconnected one-dimensional extra-large elliptical channels with a diameter up to 11 Å able to host bulky guest species, and the particular organic structure-directing agent used for the synthesis (1,8-bis(dimethylamino)naphthalene, DMAN), which efficiently fills the IFO pores, and is itself a photoactive molecule with interesting fluorescence properties in the blue range of the visible spectrum, thus providing a densely-incorporated donor species for FRET processes. Besides, occlusion of DMAN dye in the framework triggers a notable improvement of its fluorescence properties by confinement effect. To extend the action of the material and to mimic processes such as photosynthesis in which FRET is essential, two robust laser dyes with bulky size, rhodamine 123 and Nile Blue, have been encapsulated for the first time in a zeolitic framework, together with DMAN, in a straightforward one-pot synthesis. Thus, photoactive systems with emission in the entire visible range have been achieved due to a partial FRET between organic chromophores protected in a rigid aluminophosphate matrix.

2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612388

RESUMO

Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host-guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield.


Assuntos
Nanoporos , Corantes , Movimento (Física) , Extremidade Superior
3.
J Am Chem Soc ; 144(18): 8249-8256, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502872

RESUMO

The development of chiral zeolitic catalysts possessing extra-large pores and endowed with the capability of enantioselectively processing bulky products represents one of the greatest challenges in chemistry. Here, we report the discovery of GTM-3, an enantio-enriched extra-large pore chiral zeolite material with -ITV framework structure, obtained using a simple enantiopure organic cation derived from the chiral pool, N,N-ethyl-methyl-pseudoephedrinium, as the chiral-inductor agent. We demonstrate the enantio-enrichment of GTM-3 in one of the two enantiomorphic polymorphs using the two enantiomers of the organic cation. Interestingly, we prove the ability of this zeolitic material to perform enantioselective catalytic operations with very large substrates, here exemplified by the catalytic epoxide aperture of the bulky trans-stilbene oxide with alcohols, yielding unprecedented product enantiomeric excesses up to 30%. Our discovery opens the way for the use of accessible chiral zeolitic materials for the catalytic asymmetric synthesis of chiral pharmaceutical compounds.


Assuntos
Zeolitas , Catálise , Estereoisomerismo
4.
Chemistry ; 28(42): e202200702, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35510690

RESUMO

(1S,2S)-N-methyl-pseudoephedrine (MPS) was used as organic structure-directing agent (OSDA) for the synthesis of Mg-doped nanoporous aluminophosphates. This molecule displays a particular conformational behavior, where the presence of H-bond donor and acceptor groups provide a rigid conformational space with one asymmetric conformation preferentially occurring. MPS drives the crystallization of Mg-containing AFI materials. Characterization of these materials shows that the OSDA incorporate as protonated species, arranged as head-to-tail monomers. Combination of three-dimensional electron diffraction with high-resolution synchrotron powder X-ray diffraction allowed to locate both the Mg and the organic species. Interestingly, results showed that the spatial incorporation of Mg is driven by the hydroxyl groups of the organic cation through the development of H-bonds with negatively-charged MgO4 tetrahedra. This work demonstrates that H-bond forming groups can be used to drive the spatial incorporation of low-valent dopants within zeolitic frameworks, a highly desired aim in order to control their catalytic activity and selectivity.


Assuntos
Zeolitas , Domínio Catalítico , Cristalização , Zeolitas/química
5.
Chemistry ; 25(6): 1561-1572, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30468544

RESUMO

As the spacer length in 1,2-dimethylimidazolium-based dications increases beyond a specific point (six methylene units), they fail in structure-directing towards STW zeolites in any synthetic conditions. These dications can instead produce, under fluoride concentrated conditions, either *BEA [in the case of the eight-methylene-unit structure-directing agent (SDA)] or MWW (ten methylene units) zeolites. For any length of the dication, the default zeolite (MTW) is a relatively dense zeolite containing a unidimensional channel, whereas the zeolite demanding most specificity (STW, *BEA or MWW) is more porous, affording a larger concentration of the dication to be occluded. This work provides the first reported fluoride synthesis of pure silica MWW zeolites. Charge balance of the organic dications in this zeolite was achieved by combining "structural" silanolates, regular "connectivity defects" and occluded fluoride. Molecular mechanics calculations showed a perfect fit of the decamethylenebis(dimethylimidazolium) dication in the sinusoidal intralayer pore system of MWW. The calculations showed also that the dication is able to stabilize the interlayer space without disturbing the hydrogen-bonding system that holds the layers together in the as-made material. The 19 F magic-angle spinning (MAS) NMR presented two distinct resonances at -71 and -83 ppm, which, on the basis of DFT calculations, we tentatively assigned to fluoride occluded in [46 62 ] and [41 52 62 ] cages of the MWW structure, respectively. The same DFT study determines a different chemical shift of one methyl 13 C nuclear magnetic resonance according to the imidazolium ring residing in the sinusoidal channels or in the large cup cavities, thus explaining an experimentally observed splitting of that resonance.

6.
Phys Chem Chem Phys ; 20(13): 8564-8578, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29542753

RESUMO

In an attempt to promote the crystallization of chiral inorganic frameworks, we explore the ability of chiral (1R,2S)-ephedrine and its diastereoisomer (1S,2S)-pseudoephedrine to act as organic building blocks for the crystallization of hybrid organo-inorganic aluminophosphate frameworks in the presence of fluoride. These molecules were selected because of their particular molecular asymmetric structure, which enables a rich supramolecular chemistry and a potential chiral recognition phenomenon during crystallization. Up to four new low-dimensional materials have been produced, wherein the organic molecules form an organic bilayer in-between the inorganic networks. We analyze by molecular simulations the trend of these chiral molecules to form these types of framework, which is directly related to their amphiphilic nature that triggers a strong self-assembly through hydrophobic interactions between aromatic rings and hydrophilic interactions with the fluoro-aluminophosphate inorganic units. Such a self-assembly process is strongly dependent on the concentration of the organic molecules.


Assuntos
Efedrina/química , Pseudoefedrina/química , Interações Hidrofóbicas e Hidrofílicas , Fosfatos/química
7.
Chemistry ; 22(44): 15700-15711, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27629940

RESUMO

In this work, hemicyanine dye LDS 722 is encapsulated into the 1D elliptical nanochannels of MgAPO-11 aluminophosphate by a crystallization inclusion method. The synthesis of the hybrid material has been optimized through a systematic variation of the crystallization conditions in order to obtain pure and large crystals (around 20 µm×30 µm) suitable for optical applications. The tight fitting between the molecular size of the guest dye and the pore dimensions of the host has favored a rigid planar conformation of the dye, restricting its inherent flexibility, which is confirmed by molecular simulations. Consequently, the encapsulation of LDS 722 into MgAPO-11 has led to an astonishing enhancement of the fluorescence with respect to the dye into MgAPO-5, with slightly larger cylindrical channels, and with respect to the dye in solution. Moreover, the perfect alignment of LDS 722 (dye with intrinsic nonlinear-optical properties) along the channels of MgAPO-11 has revealed attractive second-order nonlinear properties, such as second harmonic generation, proven through microscopy measurements in single crystals.

8.
Phys Chem Chem Phys ; 17(1): 348-57, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381745

RESUMO

A molecular-mechanics computational study is performed in order to analyze the arrangement of (1R,2S)-(-)-ephedrine molecules within the 12-MR channels of the AFI aluminophosphate microporous framework and the influence on the spatial distribution of dopants embedded in the tetrahedral network. Results showed that ephedrine molecules arrange exclusively as dimers by π-π stacking of the aromatic rings within the AFI channels. Interestingly, the asymmetric nature of ephedrine and the presence of H-bond-forming groups (NH2 and OH) involve a preferential orientation where consecutive dimers within the channels are rotated by an angle of +30°; this is driven by the establishment of inter-dimer H-bonds. This preferential orientation leads to the development of a supramolecular enantiomerically-pure helicoidal (chiral) arrangement of ephedrine dimers. In addition, the computational results demonstrate that the particular molecular structure of ephedrine imparts a strong trend to attract negative charges to the vicinity of the NH2(+) positively-charged groups. Hence divalent dopants such as Mg, whose replacement by trivalent Al in the aluminophosphate network involves the generation of a negative charge, will tend to locate close to the NH2(+) molecular groups, suggesting that an imprinting of the organic arrangement to the spatial distribution of dopants would be feasible. Combined with the trend of ephedrine to arrange in a helicoidal fashion, an enantiomerically-pure helicoidal distribution of dopants would be expected, thus inducing a new type of chirality in microporous materials.


Assuntos
Compostos de Alumínio/química , Efedrina/química , Dimerização , Ligação de Hidrogênio , Magnésio/química , Modelos Moleculares , Estrutura Molecular , Fosfatos/química , Porosidade , Estereoisomerismo
9.
Chemistry ; 19(30): 9859-65, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23780893

RESUMO

The fluorescing dye Pyronine Y has been incorporated by crystallization inclusion into three different one-dimensional microporous aluminophosphate host materials. A computer-aided rational choice of the framework of the host material made it possible to modulate the aggregation state of the guest dye molecules. Undesirable H-type dimers of Pyronine Y are included within the large channels of the AFI structure, which allow the inclusion of any of the aggregated species of the dye. Density functional theory (DFT) calculations show that H-type aggregate formation is suppressed within the ATS framework. Experimental results indicate that red-emissive J-type aggregates are formed instead, offering a one-directional, organized, multicolour emission system that is interesting for energy transport. Complete suppression of aggregation is achieved by the inclusion of Pyronine Y within the AEL-type structure, due to its particular topology and channel dimensions This results in a highly fluorescent hybrid system with extraordinarily preferential alignment of the chromophores. Here, we report experimental evidence and modelling insights for how the "cage effect" of the nanochannels can tune the optical properties of the hybrid composite material by influencing the aggregation state of the dye.

10.
Phys Chem Chem Phys ; 15(18): 6870-4, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23549259

RESUMO

A comparative computational study of the reaction mechanisms for hydrocarbon oxidations catalysed by Mn- and Fe-doped nanoporous aluminophosphates shows distinctive features for each transition metal depending on its electronic configuration. Preactivation of Mn catalysts is easier due to the higher stability of Mn(II), but its oxidation during propagation requires activation barriers. In contrast, preactivation of Fe is more difficult and avoids a direct Fe reduction because of the low stability of Fe(II). Fe(II) is only produced at the end of the propagation cycle, favoured by an energetic compensation caused by the simultaneous exothermic oxidation of an alcohol molecule. Fe-catalysed propagation is kinetically favoured since it requires lower activation barriers, and is further assisted by higher adsorption energies of the reactants and lower desorption energies of the products on the active site. The mechanistic information gained can be used for the rational design of improved oxidation catalysts.

11.
Dalton Trans ; 52(43): 15697-15711, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37791957

RESUMO

An organic cation lacking specificity in its structure-directing action offers the possibility, through the screening of other structure-directing parameters, to synthesize a variety of zeolites. In this work we show that the organic structure-directing agent 2-isopropyl-1,3-dimethylimidazolium (2iPr13DMI) can produce up to seven different zeolite phases depending on water concentration, the presence of inorganic impurities, crystallization temperature and time, and germanium molar fraction. The obtained phases are very different in terms of pore system, connectivity of the zeolite structure and structural units. At the pure SiO2 side, ZSM-12 and SSZ-35 dominate, with ZSM-12 being favored by the presence of potassium impurities and by less concentrated conditions. The introduction of Ge at low levels favors SSZ-35 over ZSM-12 and as the Ge fraction increases it successively affords CSV, -CLO and two distinct UOS zeolites, HPM-11 and HPM-6. These two zeolites have the same topology but distinct chemical compositions and display powder X-ray diffraction patterns that are much different from each other and from that of as-synthesized IM-16 (UOS reference material). They also show different symmetry at 96 K. Rietveld refinements of the three as-made UOS materials mentioned are provided. HPM-6 and HPM-11 are produced in distinct, non-adjacent crystallization fields. The frequent cocrystallization of the chiral STW zeolite, however, did not afford its synthesis as a pure phase. Molecular mechanics simulations of the location of the organic cation and host-guest interactions fail to explain the observed trends, but also considering the intrinsic stability of the zeolites and the effect of germanium help to rationalize the results. The study is completed by DFT calculations of the NMR chemical shifts of 13C in UOS (helping to understand splittings in the spectrum) and 19F in CSV (supporting the location of fluoride inside the new [4452], which is an incomplete double 4-ring).

12.
J Am Chem Soc ; 134(8): 3845-56, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22279973

RESUMO

A series of doubly charged structure-directing agents based on two methylimidazolium moieties linked by a linear bridge of n = 3,4,5, or 6 methylene groups has been used in the synthesis of pure silica zeolites in the presence of fluoride. All of them yielded zeolite TON while only the one with n = 4 was able to produce also zeolite MFI at highly concentrated conditions. In this MFI zeolite, two distinct (19)F MAS NMR resonances with about equal intensity were observed, indicating two different chemical environments for occluded fluoride. With the singly charged 1-ethyl-3-methylimidazolium cation, which can be formally considered as the "monomer" of the bis-imidazolium cation with n = 4, TON and MFI were also obtained, and again two (19)F MAS NMR resonances now with largely dissimilar intensities were observed in MFI. Molecular mechanics simulations support a commensurate structure-direction effect for n = 4 in MFI, with each imidazolium ring, in two different orientations, sitting close to the [4(1)5(2)6(2)] cage. Periodic DFT calculations suggest that F in MFI resides always in the [4(1)5(2)6(2)] cages, with the different (19)F resonances observed being due to the different orientation of the closest imidazolium ring.


Assuntos
Imidazóis/química , Zeolitas/química , Cátions/química , Flúor , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Teoria Quântica , Zeolitas/síntese química
13.
Dalton Trans ; 51(14): 5434-5440, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293917

RESUMO

In this work we show the use of high-resolution 1H MAS NMR to distinguish between two kinds of aggregation states of (1R,2S)-ephedrine, a chiral organic structure directing agent, occluded within AFI-type microporous aluminophosphates. We investigate in particular the supramolecular assembly of the molecules through π⋯π type interactions of their aromatic rings when confined within the one-dimensional AFI channels. A series of high-resolution two-dimensional spin diffusion spectra combined with molecular simulations and DFT calculations allowed us to distinguish different aggregation states of ephedrine molecules and precisely estimate the distances between the aromatic rings and their closest protons inside the zeolite channels as a consequence of distinct proton spin diffusion profiles.

14.
Chem Commun (Camb) ; 58(94): 13083-13086, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349553

RESUMO

A surprising inversion of chirality of the -ITV zeolite framework is observed when the ethyl group of the enantiopure N,N-ethyl-methyl-pseudoephedrinium organic structure-directing agent is replaced by a benzyl or 2-methylbenzyl group, keeping the same molecular absolute configuration. Interestingly, chiral zeolite materials obtained with these new benzyl-containing cations reach unprecedentedly high enantiomeric excesses up to 55%.

15.
Chem Commun (Camb) ; 57(2): 191-194, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33295346

RESUMO

The new zeolite NUD-3 possesses a three-dimensional system of large pore channels that is topologically identical to those of ITQ-21 and PKU-14. However, the three zeolites have distinctly different frameworks: a particular single 4-membered ring inside the denser portion of the zeolite is missing in PKU-14, disordered in ITQ-21 and fully ordered in NUD-3. We document these differences and use molecular simulations to unravel the mechanism by which a particular structure directing agent dication, 1,1'-(1,2-phenylenebis(methylene))bis(3-methylimidazolium), is able to orient this inner ring.

16.
Chemistry ; 16(46): 13638-45, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21108251

RESUMO

In this work we apply state-of-the-art electronic-structure-based computational methods based on hybrid-exchange density functional theory to study the mechanism of the aerobic oxidation of hydrocarbons catalysed by Mn-doped nanoporous aluminophosphates (Mn-AlPOs). We compare our results with available experimental data. We show that the catalytic efficiency of Mn-AlPOs in oxidation reactions is intrinsically linked to 1) the Mn redox activity, in particular between 2+ and 3+ oxidation states, and 2) the coordinative insaturation of tetrahedral Mn embedded in AlPO frameworks, which facilitates the reaction by stabilising oxo-type radicals through the formation of Mn complexes. Our mechanism demonstrates the crucial role of both Mn(III) and Mn(II) in the reaction mechanism: Mn(III) sites undergo an initial reaction cycle that leads to the production of the alkyl hydroperoxide intermediate, which can only be transformed into the oxidative products (alcohol, aldehyde and acid) by Mn(II). A preactivation step is required to yield the reduced Mn(II) sites able to decompose the hydroperoxide intermediates; this step takes place through a transformation of the hydrocarbon into the corresponding peroxo-derivative, stabilised by forming a complex with Mn(III) and yielding at the same time reduced Mn(II) sites. Both species enter a subsequent propagation cycle in which Mn(II) catalyses the dissociation of the hydroperoxide that proceeds until the formation of the oxidative products by two parallel pathways, through alkoxy- or hydroxy-radical-like intermediates, whilst the Mn(III)-peroxo complex enables further production of the hydroperoxide intermediate.

17.
Dalton Trans ; 49(21): 7037-7043, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32396596

RESUMO

HPM-7, a germanosilicate synthesized using long imidazolium-based dications with two different linkers, is shown to possess the POS topology, although disorder may exist but it is very difficult to discern. First, three simple ordered polymorphs (POS-A to POS-C) with very similar energies and structural motifs could give rise to intergrowths that would be very difficult to recognize by powder X-ray diffraction, according to DIFFaX simulations. Another four structures (POS-D to POS-G) can be derived from POS by changing the orientation of two single four rings within the structure, possibly providing an additional source of disorder. While 3D EDT strongly suggests that HPM-7 basically possesses the POS-A (i.e. POS) topology, a detailed HR-STEM study demonstrates the rare existence of some disorder compatible with the polymorph POS-D. The general avoidance of polymorphs with very similar structural motifs and comparable energies points to a rather specific structure-direction by the organic dications used.

18.
Dalton Trans ; 49(28): 9618-9631, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32584358

RESUMO

In this work, we perform an in-depth experimental and computational study about the structure-directing effect of two new chiral organic quaternary ammonium dications bearing two N-methyl-prolinol units linked by a xylene spacer in para or meta relative orientation, displaying four enantiopure stereogenic centers in (S) configuration. Synthesis results show that the para-xylene derivative is an efficient structure-directing agent, promoting the crystallization of ZSM-12 (in pure-silica composition), beta zeolite (as pure-silica, or in the presence of Al or Ge), and a mixture of polymorphs C, A and B of zeolite beta (in the presence of Ge). In contrast, the meta-xylene derivative showed a much poorer structure-directing activity, yielding only amorphous materials unless Ge is present in the gel, where beta and polymorph C (together with A and B) zeolites crystallized. Molecular simulations showed that the para-xylene dication displays a cylindrical shape suitable for confining in zeolite pores, while the meta-xylene derivative has an angular shape that shifts from the typical dimensions required for 12MR zeolite channels. Despite enantio-purity of the para-xylene dication with (S,S,S,S) configuration, no enrichment in polymorph A of the zeolite beta samples obtained was observed by Transmission Electron Microscopy. With the aid of molecular simulations, the failure in transferring chirality to the zeolite is explained by the loose fit of this SDA in the large-pores of zeolite beta, and a lack of close geometrical fit with the chiral element of polymorph A, as evidenced by the very similar interaction of the cation with the two enantiomorphic space groups of polymorph A. Nevertheless, the molecular-level knowledge gained in this work can provide insights for the future design of more efficient SDAs towards the synthesis of chiral zeolites.

19.
Nanomaterials (Basel) ; 10(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560167

RESUMO

By simultaneous occlusion of rationally chosen dyes, emitting in the blue, green and red region of the electromagnetic spectrum, into the one-dimensional channels of a magnesium-aluminophosphate with AEL-zeolitic type structure, MgAPO-11, a solid-state system with efficient white light emission under UV excitation, was achieved. The dyes herein selected-acridine (AC), pyronin Y (PY), and hemicyanine LDS722-ensure overall a good match between their molecular sizes and the MgAPO-11 channel dimensions. The occlusion was carried out via the crystallization inclusion method, in a suitable proportion of the three dyes to render efficient white fluorescence systems by means of fine-tuned FRET (fluorescence resonance energy transfer) energy transfer processes. The FRET processes are thoroughly examined by the analysis of fluorescence decay traces using the femtosecond fluorescence up-conversion technique.

20.
J Am Chem Soc ; 131(45): 16509-24, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19852487

RESUMO

Fluorescence spectroscopy and a range of computer simulation techniques are used to study the structure directing effect of benzylpyrrolidine (BP) and (S)-(-)-N-benzylpyrrolidine-2-methanol (BPM) in the synthesis of nanoporous aluminophosphate frameworks with AFI (one-dimensional channels) and SAO (three-dimensional interconnected channels) topologies. We study the supramolecular chemistry of BP and BPM molecules in aqueous solution and compare it with the aggregation state of the molecules found when they are inside the AlPO nanopores after crystallization. The aggregation of the molecules within the structures can be explained by a combination of thermodynamic and kinetic effects. The former are given by the stability of the molecular species interacting with the oxide networks relative to their stability in solution; the latter depend on the aggregation behavior of the molecules in the synthesis gels prior to crystallization. Whereas BPM only forms one type of aggregate in solution, which has the appropriate conformation to match the empty channels of the forming nanoporous frameworks, BP forms aggregates with different molecular orientations, of which only one matches the framework interstices. This different supramolecular chemistry, together with the higher interaction of BPM with the oxide networks, makes BPM a better structure directing agent (SDA); it is also responsible for the higher incorporation of BPM as dimers in the frameworks, especially in the AFI structure, observed experimentally. The concentration of the SDA molecules in the gels, and so the density per volume of the SDAs, determines the exclusion zone from which the pores and/or cavities of the framework will arise, and so the porous network of the formed material. A clear relationship between the SDA density in solution and in the framework is observed, thus enabling an eventual control of the material density by adjusting the SDA concentration in the gels. The topological instability intrinsic to these open framework structures is compensated by a high host-guest interaction energy; the SAO topology is further stabilized by doping with Zn. Our computational results account for and rationalize all the effects observed experimentally, providing a complete picture of the mode of structure direction of these aromatic molecules in the synthesis of nanoporous aluminophosphates.


Assuntos
Compostos de Alumínio/síntese química , Nanoestruturas/química , Fosfatos/síntese química , Pirrolidinas/química , Compostos de Alumínio/química , Simulação por Computador , Modelos Químicos , Tamanho da Partícula , Fosfatos/química , Porosidade , Espectrometria de Fluorescência , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA