Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(4): 1389-1398, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37831662

RESUMO

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is an ultraorphan neurogenetic disease from the group of neurodegeneration with brain iron accumulation (NBIA) disorders. Here we report cross-sectional and longitudinal data to define the phenotype, to assess disease progression and to estimate sample sizes for clinical trials. We enrolled patients with genetically confirmed MPAN from the Treat Iron-Related Childhood-Onset Neurodegeneration (TIRCON) registry and cohort study, and from additional sites. Linear mixed-effect modelling (LMEM) was used to calculate annual progression rates for the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia (BAD) scale, Schwab and England Activities of Daily Living (SE-ADL) scale and the Pediatric Quality of Life Inventory (PedsQL). We investigated 85 MPAN patients cross-sectionally, with functional outcome data collected in 45. Median age at onset was 9 years and the median diagnostic delay was 5 years. The most common findings were gait disturbance (99%), pyramidal involvement (95%), dysarthria (90%), vision disturbances (82%), with all but dysarthria presenting early in the disease course. After 16 years with the disease, 50% of patients were wheelchair dependent. LMEM showed an annual progression rate of 4.5 points in total UPDRS. The total BAD scale score showed no significant progression over time. The SE-ADL scale and the patient- and parent-reported PedsQL showed a decline of 3.9%, 2.14 and 2.05 points, respectively. No patient subpopulations were identified based on longitudinal trajectories. Our cross-sectional results define the order of onset and frequency of symptoms in MPAN, which will inform the diagnostic process, help to shorten diagnostic delay and aid in counselling patients, parents and caregivers. Our longitudinal findings define the natural history of MPAN, reveal the most responsive outcomes and highlight the need for an MPAN-specific rating approach. Our sample size estimations inform the design of upcoming clinical trials.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Neurodegenerativas , Criança , Humanos , Disartria , Estudos de Coortes , Atividades Cotidianas , Estudos Transversais , Diagnóstico Tardio , Qualidade de Vida , Mutação/genética , Doenças Neurodegenerativas/genética , Fenótipo , Proteínas de Membrana/genética , Membranas Mitocondriais
2.
Hum Brain Mapp ; 45(5): e26555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544418

RESUMO

Novel features derived from imaging and artificial intelligence systems are commonly coupled to construct computer-aided diagnosis (CAD) systems that are intended as clinical support tools or for investigation of complex biological patterns. This study used sulcal patterns from structural images of the brain as the basis for classifying patients with schizophrenia from unaffected controls. Statistical, machine learning and deep learning techniques were sequentially applied as a demonstration of how a CAD system might be comprehensively evaluated in the absence of prior empirical work or extant literature to guide development, and the availability of only small sample datasets. Sulcal features of the entire cerebral cortex were derived from 58 schizophrenia patients and 56 healthy controls. No similar CAD systems has been reported that uses sulcal features from the entire cortex. We considered all the stages in a CAD system workflow: preprocessing, feature selection and extraction, and classification. The explainable AI techniques Local Interpretable Model-agnostic Explanations and SHapley Additive exPlanations were applied to detect the relevance of features to classification. At each stage, alternatives were compared in terms of their performance in the context of a small sample. Differentiating sulcal patterns were located in temporal and precentral areas, as well as the collateral fissure. We also verified the benefits of applying dimensionality reduction techniques and validation methods, such as resubstitution with upper bound correction, to optimize performance.


Assuntos
Inteligência Artificial , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Neuroimagem , Aprendizado de Máquina , Diagnóstico por Computador
3.
Neuroimage ; 271: 119960, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36854351

RESUMO

Proactive cognition brain models are mainstream nowadays. Within these, preparation is understood as an endogenous, top-down function that takes place prior to the actual perception of a stimulus and improves subsequent behavior. Neuroimaging has shown the existence of such preparatory activity separately in different cognitive domains, however no research to date has sought to uncover their potential similarities and differences. Two of these, often confounded in the literature, are Selective Attention (information relevance) and Perceptual Expectation (information probability). We used EEG to characterize the mechanisms that pre-activate specific contents in Attention and Expectation. In different blocks, participants were cued to the relevance or to the probability of target categories, faces vs. names, in a gender discrimination task. Multivariate Pattern (MVPA) and Representational Similarity Analyses (RSA) during the preparation window showed that both manipulations led to a significant, ramping-up prediction of the relevant or expected target category. However, classifiers trained with data from one condition did not generalize to the other, indicating the existence of unique anticipatory neural patterns. In addition, a Canonical Template Tracking procedure showed that there was stronger anticipatory perceptual reinstatement for relevance than for expectation blocks. Overall, the results indicate that preparation during attention and expectation acts through distinguishable neural mechanisms. These findings have important implications for current models of brain functioning, as they are a first step towards characterizing and dissociating the neural mechanisms involved in top-down anticipatory processing.


Assuntos
Mapeamento Encefálico , Motivação , Humanos , Atenção/fisiologia , Cognição , Sinais (Psicologia)
4.
Pharmacol Res ; 197: 106984, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37940064

RESUMO

The integration of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging techniques with machine learning (ML) algorithms, including deep learning (DL) models, is a promising approach. This integration enhances the precision and efficiency of current diagnostic and treatment strategies while offering invaluable insights into disease mechanisms. In this comprehensive review, we delve into the transformative impact of ML and DL in this domain. Firstly, a brief analysis is provided of how these algorithms have evolved and which are the most widely applied in this domain. Their different potential applications in nuclear imaging are then discussed, such as optimization of image adquisition or reconstruction, biomarkers identification, multimodal fusion and the development of diagnostic, prognostic, and disease progression evaluation systems. This is because they are able to analyse complex patterns and relationships within imaging data, as well as extracting quantitative and objective measures. Furthermore, we discuss the challenges in implementation, such as data standardization and limited sample sizes, and explore the clinical opportunities and future horizons, including data augmentation and explainable AI. Together, these factors are propelling the continuous advancement of more robust, transparent, and reliable systems.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Aprendizado de Máquina
5.
Neuroradiology ; 64(5): 875-886, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35212785

RESUMO

PURPOSE: To perform a review of the physical basis of DTI and DCE-MRI applied to Peripheral Nerves (PNs) evaluation with the aim of providing readers the main concepts and tools to acquire these types of sequences for PNs assessment. The potential added value of these advanced techniques for pre-and post-surgical PN assessment is also reviewed in diverse clinical scenarios. Finally, a brief introduction to the promising applications of Artificial Intelligence (AI) for PNs evaluation is presented. METHODS: We review the existing literature and analyze the latest evidence regarding DTI, DCE-MRI and AI for PNs assessment. This review is focused on a practical approach to these advanced sequences providing tips and tricks for implementing them into real clinical practice focused on imaging postprocessing and their current clinical applicability. A summary of the potential applications of AI algorithms for PNs assessment is also included. RESULTS: DTI, successfully used in central nervous system, can also be applied for PNs assessment. DCE-MRI can help evaluate PN's vascularization and integrity of Blood Nerve Barrier beyond the conventional gadolinium-enhanced MRI sequences approach. Both approaches have been tested for PN assessment including pre- and post-surgical evaluation of PNs and tumoral conditions. AI algorithms may help radiologists for PN detection, segmentation and characterization with promising initial results. CONCLUSION: DTI, DCE-MRI are feasible tools for the assessment of PN lesions. This manuscript emphasizes the technical adjustments necessary to acquire and post-process these images. AI algorithms can also be considered as an alternative and promising choice for PN evaluation with promising results.


Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos , Nervos Periféricos/diagnóstico por imagem
6.
IEEE Sens J ; 22(18): 17573-17582, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36346095

RESUMO

(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.

7.
Int J Intell Syst ; 37(2): 1572-1598, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38607823

RESUMO

COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k-nearest neighbors algorithm, in which the ILRs were linked with their k-nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis.

8.
Sensors (Basel) ; 21(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200287

RESUMO

In this paper, a novel medical image encryption method based on multi-mode synchronization of hyper-chaotic systems is presented. The synchronization of hyper-chaotic systems is of great significance in secure communication tasks such as encryption of images. Multi-mode synchronization is a novel and highly complex issue, especially if there is uncertainty and disturbance. In this work, an adaptive-robust controller is designed for multimode synchronized chaotic systems with variable and unknown parameters, despite the bounded disturbance and uncertainty with a known function in two modes. In the first case, it is a main system with some response systems, and in the second case, it is a circular synchronization. Using theorems it is proved that the two synchronization methods are equivalent. Our results show that, we are able to obtain the convergence of synchronization error and parameter estimation error to zero using Lyapunov's method. The new laws to update time-varying parameters, estimating disturbance and uncertainty bounds are proposed such that stability of system is guaranteed. To assess the performance of the proposed synchronization method, various statistical analyzes were carried out on the encrypted medical images and standard benchmark images. The results show effective performance of the proposed synchronization technique in the medical images encryption for telemedicine application.


Assuntos
Algoritmos , Dinâmica não Linear , Comunicação , Simulação por Computador , Incerteza
9.
Inf Fusion ; 67: 208-229, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33052196

RESUMO

(Aim) COVID-19 is an infectious disease spreading to the world this year. In this study, we plan to develop an artificial intelligence based tool to diagnose on chest CT images. (Method) On one hand, we extract features from a self-created convolutional neural network (CNN) to learn individual image-level representations. The proposed CNN employed several new techniques such as rank-based average pooling and multiple-way data augmentation. On the other hand, relation-aware representations were learnt from graph convolutional network (GCN). Deep feature fusion (DFF) was developed in this work to fuse individual image-level features and relation-aware features from both GCN and CNN, respectively. The best model was named as FGCNet. (Results) The experiment first chose the best model from eight proposed network models, and then compared it with 15 state-of-the-art approaches. (Conclusion) The proposed FGCNet model is effective and gives better performance than all 15 state-of-the-art methods. Thus, our proposed FGCNet model can assist radiologists to rapidly detect COVID-19 from chest CT images.

10.
Inf Fusion ; 64: 149-187, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32834795

RESUMO

Multimodal fusion in neuroimaging combines data from multiple imaging modalities to overcome the fundamental limitations of individual modalities. Neuroimaging fusion can achieve higher temporal and spatial resolution, enhance contrast, correct imaging distortions, and bridge physiological and cognitive information. In this study, we analyzed over 450 references from PubMed, Google Scholar, IEEE, ScienceDirect, Web of Science, and various sources published from 1978 to 2020. We provide a review that encompasses (1) an overview of current challenges in multimodal fusion (2) the current medical applications of fusion for specific neurological diseases, (3) strengths and limitations of available imaging modalities, (4) fundamental fusion rules, (5) fusion quality assessment methods, and (6) the applications of fusion for atlas-based segmentation and quantification. Overall, multimodal fusion shows significant benefits in clinical diagnosis and neuroscience research. Widespread education and further research amongst engineers, researchers and clinicians will benefit the field of multimodal neuroimaging.

11.
Inf Fusion ; 58: 153-167, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32284705

RESUMO

Despite subjects with Dominantly-Inherited Alzheimer's Disease (DIAD) represent less than 1% of all Alzheimer's Disease (AD) cases, the Dominantly Inherited Alzheimer Network (DIAN) initiative constitutes a strong impact in the understanding of AD disease course with special emphasis on the presyptomatic disease phase. Until now, the 3 genes involved in DIAD pathogenesis (PSEN1, PSEN2 and APP) have been commonly merged into one group (Mutation Carriers, MC) and studied using conventional statistical analysis. Comparisons between groups using null-hypothesis testing or longitudinal regression procedures, such as the linear-mixed-effects models, have been assessed in the extant literature. Within this context, the work presented here performs a comparison between different groups of subjects by considering the 3 genes, either jointly or separately, and using tools based on Machine Learning (ML). This involves a feature selection step which makes use of ANOVA followed by Principal Component Analysis (PCA) to determine which features would be realiable for further comparison purposes. Then, the selected predictors are classified using a Support-Vector-Machine (SVM) in a nested k-Fold cross-validation resulting in maximum classification rates of 72-74% using PiB PET features, specially when comparing asymptomatic Non-Carriers (NC) subjects with asymptomatic PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experiments led to the idea that PSEN1-MC might be considered as a mixture of two different subgroups including: a first group whose patterns were very close to NC subjects, and a second group much more different in terms of imaging patterns. Thus, using a k-Means clustering algorithm it was determined both subgroups and a new classification scenario was conducted to validate this process. The comparison between each subgroup vs. NC subjects resulted in classification rates around 80% underscoring the importance of considering DIAN as an heterogeneous entity.

12.
Hum Brain Mapp ; 38(3): 1208-1223, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27774713

RESUMO

Neuroimaging studies have reported structural and physiological differences that could help understand the causes and development of Autism Spectrum Disorder (ASD). Many of them rely on multisite designs, with the recruitment of larger samples increasing statistical power. However, recent large-scale studies have put some findings into question, considering the results to be strongly dependent on the database used, and demonstrating the substantial heterogeneity within this clinically defined category. One major source of variance may be the acquisition of the data in multiple centres. In this work we analysed the differences found in the multisite, multi-modal neuroimaging database from the UK Medical Research Council Autism Imaging Multicentre Study (MRC AIMS) in terms of both diagnosis and acquisition sites. Since the dissimilarities between sites were higher than between diagnostic groups, we developed a technique called Significance Weighted Principal Component Analysis (SWPCA) to reduce the undesired intensity variance due to acquisition site and to increase the statistical power in detecting group differences. After eliminating site-related variance, statistically significant group differences were found, including Broca's area and the temporo-parietal junction. However, discriminative power was not sufficient to classify diagnostic groups, yielding accuracies results close to random. Our work supports recent claims that ASD is a highly heterogeneous condition that is difficult to globally characterize by neuroimaging, and therefore different (and more homogenous) subgroups should be defined to obtain a deeper understanding of ASD. Hum Brain Mapp 38:1208-1223, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Transtorno Autístico/patologia , Mapeamento Encefálico , Encéfalo/patologia , Análise de Componente Principal , Adolescente , Adulto , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/genética , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
14.
Physiol Meas ; 45(5)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697206

RESUMO

Objective.Myocarditis poses a significant health risk, often precipitated by viral infections like coronavirus disease, and can lead to fatal cardiac complications. As a less invasive alternative to the standard diagnostic practice of endomyocardial biopsy, which is highly invasive and thus limited to severe cases, cardiac magnetic resonance (CMR) imaging offers a promising solution for detecting myocardial abnormalities.Approach.This study introduces a deep model called ELRL-MD that combines ensemble learning and reinforcement learning (RL) for effective myocarditis diagnosis from CMR images. The model begins with pre-training via the artificial bee colony (ABC) algorithm to enhance the starting point for learning. An array of convolutional neural networks (CNNs) then works in concert to extract and integrate features from CMR images for accurate diagnosis. Leveraging the Z-Alizadeh Sani myocarditis CMR dataset, the model employs RL to navigate the dataset's imbalance by conceptualizing diagnosis as a decision-making process.Main results.ELRL-DM demonstrates remarkable efficacy, surpassing other deep learning, conventional machine learning, and transfer learning models, achieving an F-measure of 88.2% and a geometric mean of 90.6%. Extensive experimentation helped pinpoint the optimal reward function settings and the perfect count of CNNs.Significance.The study addresses the primary technical challenge of inherent data imbalance in CMR imaging datasets and the risk of models converging on local optima due to suboptimal initial weight settings. Further analysis, leaving out ABC and RL components, confirmed their contributions to the model's overall performance, underscoring the effectiveness of addressing these critical technical challenges.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Miocardite , Miocardite/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
15.
Int J Neural Syst ; 34(8): 2450043, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38770651

RESUMO

Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with R2 up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.


Assuntos
Aprendizado Profundo , Progressão da Doença , Neuroimagem , Doença de Parkinson , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Humanos , Neuroimagem/métodos , Aprendizado de Máquina Supervisionado , Imagem Multimodal , Masculino , Feminino
16.
Neuroimage ; 65: 449-55, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23063448

RESUMO

In this work, a linear procedure to perform the intensity normalization of FP-CIT SPECT brain images is presented. This proposed methodology is based on the fact that the histogram of intensity values can be fitted accurately using a positive skewed α-stable distribution. Then, the predicted α-stable parameters and the location-scale property are used to linearly transform the intensity values in each voxel. This transformation is performed such that the new histograms in each image have a pre-specified α-stable distribution with desired location and dispersion values. The proposed methodology is compared with a similar approach assuming Gaussian distribution and the widely used specific-to-nonspecific ratio. In this work, we show that the linear normalization method using the α-stable distribution outperforms those existing methods.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Humanos , Compostos Radiofarmacêuticos , Tropanos
17.
Sensors (Basel) ; 13(9): 11797-817, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24013490

RESUMO

Ellipsoid fitting algorithms are widely used to calibrate Magnetic Angular Rate and Gravity (MARG) sensors. These algorithms are based on the minimization of an error function that optimizes the parameters of a mathematical sensor model that is subsequently applied to calibrate the raw data. The convergence of this kind of algorithms to a correct solution is very sensitive to input data. Input calibration datasets must be properly distributed in space so data can be accurately fitted to the theoretical ellipsoid model. Gathering a well distributed set is not an easy task as it is difficult for the operator carrying out the maneuvers to keep a visual record of all the positions that have already been covered, as well as the remaining ones. It would be then desirable to have a system that gives feedback to the operator when the dataset is ready, or to enable the calibration process in auto-calibrated systems. In this work, we propose two different algorithms that analyze the goodness of the distributions by computing four different indicators. The first approach is based on a thresholding algorithm that uses only one indicator as its input and the second one is based on a Fuzzy Logic System (FLS) that estimates the calibration error for a given calibration set using a weighted combination of two indicators. Very accurate classification between valid and invalid datasets is achieved with average Area Under Curve (AUC) of up to 0:98.


Assuntos
Acelerometria/instrumentação , Acelerometria/métodos , Algoritmos , Gravitação , Magnetometria/instrumentação , Magnetometria/métodos , Acelerometria/normas , Calibragem , Desenho de Equipamento , Análise de Falha de Equipamento , Magnetometria/normas
18.
J Imaging ; 9(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504824

RESUMO

Artificial intelligence (AI) refers to the field of computer science theory and technology [...].

19.
Int J Neural Syst ; 33(3): 2350010, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36655400

RESUMO

Deep learning has become a primary choice in medical image analysis due to its powerful representation capability. However, most existing deep learning models designed for medical image classification can only perform well on a specific disease. The performance drops dramatically when it comes to other diseases. Generalizability remains a challenging problem. In this paper, we propose an evolutionary attention-based network (EDCA-Net), which is an effective and robust network for medical image classification tasks. To extract task-related features from a given medical dataset, we first propose the densely connected attentional network (DCA-Net) where feature maps are automatically channel-wise weighted, and the dense connectivity pattern is introduced to improve the efficiency of information flow. To improve the model capability and generalizability, we introduce two types of evolution: intra- and inter-evolution. The intra-evolution optimizes the weights of DCA-Net, while the inter-evolution allows two instances of DCA-Net to exchange training experience during training. The evolutionary DCA-Net is referred to as EDCA-Net. The EDCA-Net is evaluated on four publicly accessible medical datasets of different diseases. Experiments showed that the EDCA-Net outperforms the state-of-the-art methods on three datasets and achieves comparable performance on the last dataset, demonstrating good generalizability for medical image classification.

20.
Int J Neural Syst ; 33(4): 2350019, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800922

RESUMO

The combination of different sources of information is currently one of the most relevant aspects in the diagnostic process of several diseases. In the field of neurological disorders, different imaging modalities providing structural and functional information are frequently available. Those modalities are usually analyzed separately, although a joint of the features extracted from both sources can improve the classification performance of Computer-Aided Diagnosis (CAD) tools. Previous studies have computed independent models from each individual modality and combined them in a subsequent stage, which is not an optimum solution. In this work, we propose a method based on the principles of siamese neural networks to fuse information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). This framework quantifies the similarities between both modalities and relates them with the diagnostic label during the training process. The resulting latent space at the output of this network is then entered into an attention module in order to evaluate the relevance of each brain region at different stages of the development of Alzheimer's disease. The excellent results obtained and the high flexibility of the method proposed allow fusing more than two modalities, leading to a scalable methodology that can be used in a wide range of contexts.


Assuntos
Doença de Alzheimer , Imagem Multimodal , Humanos , Imagem Multimodal/métodos , Neuroimagem/métodos , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA