Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38180828

RESUMO

Complex biological processes in cells are embedded in the interactome, representing the complete set of protein-protein interactions. Mapping and analyzing the protein structures are essential to fully comprehending these processes' molecular details. Therefore, knowing the structural coverage of the interactome is important to show the current limitations. Structural modeling of protein-protein interactions requires accurate protein structures. In this study, we mapped all experimental structures to the reference human proteome. Later, we found the enrichment in structural coverage when complementary methods such as homology modeling and deep learning (AlphaFold) were included. We then collected the interactions from the literature and databases to form the reference human interactome, resulting in 117 897 non-redundant interactions. When we analyzed the structural coverage of the interactome, we found that the number of experimentally determined protein complex structures is scarce, corresponding to 3.95% of all binary interactions. We also analyzed known and modeled structures to potentially construct the structural interactome with a docking method. Our analysis showed that 12.97% of the interactions from HuRI and 73.62% and 32.94% from the filtered versions of STRING and HIPPIE could potentially be modeled with high structural coverage or accuracy, respectively. Overall, this paper provides an overview of the current state of structural coverage of the human proteome and interactome.


Assuntos
Proteoma , Humanos , Bases de Dados Factuais
2.
J Proteome Res ; 23(2): 560-573, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252700

RESUMO

One of the primary goals of systems medicine is the detection of putative proteins and pathways involved in disease progression and pathological phenotypes. Vascular cognitive impairment (VCI) is a heterogeneous condition manifesting as cognitive impairment resulting from vascular factors. The precise mechanisms underlying this relationship remain unclear, which poses challenges for experimental research. Here, we applied computational approaches like systems biology to unveil and select relevant proteins and pathways related to VCI by studying the crosstalk between cardiovascular and cognitive diseases. In addition, we specifically included signals related to oxidative stress, a common etiologic factor tightly linked to aging, a major determinant of VCI. Our results show that pathways associated with oxidative stress are quite relevant, as most of the prioritized vascular cognitive genes and proteins were enriched in these pathways. Our analysis provided a short list of proteins that could be contributing to VCI: DOLK, TSC1, ATP1A1, MAPK14, YWHAZ, CREB3, HSPB1, PRDX6, and LMNA. Moreover, our experimental results suggest a high implication of glycative stress, generating oxidative processes and post-translational protein modifications through advanced glycation end-products (AGEs). We propose that these products interact with their specific receptors (RAGE) and Notch signaling to contribute to the etiology of VCI.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Demência Vascular , Humanos , Transtornos Cognitivos/complicações , Transtornos Cognitivos/diagnóstico , Disfunção Cognitiva/genética , Estresse Oxidativo , Cognição , Demência Vascular/genética , Demência Vascular/diagnóstico
3.
J Chem Inf Model ; 64(8): 2979-2987, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526504

RESUMO

Proteins are vital components of the biological world and serve a multitude of functions. They interact with other molecules through their interfaces and participate in crucial cellular processes. Disruption of these interactions can have negative effects on organisms, highlighting the importance of studying protein-protein interfaces for developing targeted therapies for diseases. Therefore, the development of a reliable method for investigating protein-protein interactions is of paramount importance. In this work, we present an approach for validating protein-protein interfaces using learned interface representations. The approach involves using a graph-based contrastive autoencoder architecture and a transformer to learn representations of protein-protein interaction interfaces from unlabeled data and then validating them through learned representations with a graph neural network. Our method achieves an accuracy of 0.91 for the test set, outperforming existing GNN-based methods. We demonstrate the effectiveness of our approach on a benchmark data set and show that it provides a promising solution for validating protein-protein interfaces.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Proteínas/química , Proteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Redes Neurais de Computação , Ligação Proteica , Bases de Dados de Proteínas , Modelos Moleculares
4.
J Chem Inf Model ; 64(13): 5041-5051, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38907989

RESUMO

Proteins interact through their interfaces, and dysfunction of protein-protein interactions (PPIs) has been associated with various diseases. Therefore, investigating the properties of the drug-modulated PPIs and interface-targeting drugs is critical. Here, we present a curated large data set for drug-like molecules in protein interfaces. We further introduce DiPPI (Drugs in Protein-Protein Interfaces), a two-module web site to facilitate the search for such molecules and their properties by exploiting our data set in drug repurposing studies. In the interface module of the web site, we present several properties, of interfaces, such as amino acid properties, hotspots, evolutionary conservation of drug-binding amino acids, and post-translational modifications of these residues. On the drug-like molecule side, we list drug-like small molecules and FDA-approved drugs from various databases and highlight those that bind to the interfaces. We further clustered the drugs based on their molecular fingerprints to confine the search for an alternative drug to a smaller space. Drug properties, including Lipinski's rules and various molecular descriptors, are also calculated and made available on the web site to guide the selection of drug molecules. Our data set contains 534,203 interfaces for 98,632 protein structures, of which 55,135 are detected to bind to a drug-like molecule. 2214 drug-like molecules are deposited on our web site, among which 335 are FDA-approved. DiPPI provides users with an easy-to-follow scheme for drug repurposing studies through its well-curated and clustered interface and drug data and is freely available at http://interactome.ku.edu.tr:8501.


Assuntos
Proteínas , Proteínas/química , Proteínas/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Reposicionamento de Medicamentos , Bases de Dados de Proteínas , Humanos , Curadoria de Dados , Mapeamento de Interação de Proteínas/métodos
5.
BMC Pregnancy Childbirth ; 24(1): 427, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877443

RESUMO

OBJECTIVE: The vaginal microbiota dysbiosis induces inflammation in the uterus that triggers tissue damage and is associated with preterm birth. Progesterone is used to prevent labor in pregnant women at risk of preterm birth. However, the mechanism of action of progesterone still needs to be clarified. We aimed to show the immunomodulatory effect of progesterone on the inflammation of uterine tissue triggered by dysbiotic vaginal microbiota in a pregnant mouse model. METHODS: Healthy (n = 6) and dysbiotic (n = 7) vaginal microbiota samples isolated from pregnant women were transferred to control (n = 10) and dysbiotic (n = 14) pregnant mouse groups. The dysbiotic microbiota transferred group was treated with 1 mg progesterone (n = 7). Flow cytometry and immunohistochemistry analyses were used to evaluate inflammatory processes. Vaginal microbiota samples were analyzed by 16 S rRNA sequencing. RESULTS: Vaginal exposure to dysbiotic microbiota resulted in macrophage accumulation in the uterus and cellular damage in the placenta. Even though TNF and IL-6 elevations were not significant after dysbiotic microbiota transplantation, progesterone treatment decreased TNF and IL-6 expressions from 49.085 to 31.274% (p = 0.0313) and 29.279-21.216% (p = 0.0167), respectively. Besides, the macrophage density in the uterus was reduced, and less cellular damage in the placenta was observed. CONCLUSION: Analyzing the vaginal microbiota before or during pregnancy may support the decision for initiation of progesterone therapy. Our results also guide the development of new strategies for preventing preterm birth.


Assuntos
Disbiose , Microbiota , Placenta , Progesterona , Útero , Vagina , Feminino , Gravidez , Vagina/microbiologia , Vagina/patologia , Placenta/microbiologia , Camundongos , Humanos , Animais , Útero/microbiologia , Útero/patologia , Microbiota/efeitos dos fármacos , Nascimento Prematuro/prevenção & controle , Nascimento Prematuro/microbiologia , Modelos Animais de Doenças , Progestinas/uso terapêutico , Progestinas/farmacologia
6.
Arch Gynecol Obstet ; 310(1): 369-375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38771532

RESUMO

BACKGROUND: The vaginal microbiota plays a significant role in pregnancy outcomes and newborn health. Indeed, the composition and diversity of the vaginal microbiota can vary among different ethnic groups. Our study aimed to investigate the composition of the vaginal microbiome throughout the three trimesters of pregnancy and to identify any potential variations or patterns in the Turkish population compromising mixed ethnicities. METHOD: We conducted a longitudinal study to characterize the vaginal microbiota of pregnant women. The study included a total of 25 participants, and the samples were collected at each trimester: 11-13 weeks, 20-24 weeks and 28-34 weeks gestation. RESULTS: Lactobacillus species were consistently found to be dominant in the vaginal microbiota throughout all trimesters of pregnancy. Among Lactobacillus species, L. crispatus had the highest abundance in all trimesters (40.6%, 40.8% and 44.4%, respectively). L. iners was the second most prevalent species (28.5%, 31% and 25.04, respectively). Our findings reveal that the dominant composition of the vaginal microbiota aligns with the CST-type I, commonly observed in the European population. CONCLUSIONS: This suggests that there are shared mechanisms influencing the microbial communities in the vagina, which are likely influenced by factors such as genetics, lifestyle, and cultural behaviors rather than ethnicity alone. The complex interplay of these factors contributes to the establishment and maintenance of the vaginal microbiota during pregnancy. Understanding the underlying mechanisms and their impact on vaginal health across diverse populations is essential for improving pregnancy outcomes. The study was approved by the Koc University Ethical Committee (no:2019.093.IRB2.030) and registered at the clinical trials.


Assuntos
Lactobacillus , Microbiota , Vagina , Humanos , Feminino , Vagina/microbiologia , Gravidez , Adulto , Estudos Longitudinais , Lactobacillus/isolamento & purificação , Turquia/etnologia , Trimestres da Gravidez , Adulto Jovem , Etnicidade , Lactobacillus crispatus/isolamento & purificação
7.
Bioinformatics ; 38(21): 4962-4965, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36124958

RESUMO

SUMMARY: HMI-PRED 2.0 is a publicly available web service for the prediction of host-microbe protein-protein interaction by interface mimicry that is intended to be used without extensive computational experience. A microbial protein structure is screened against a database covering the entire available structural space of complexes of known human proteins. AVAILABILITY AND IMPLEMENTATION: HMI-PRED 2.0 provides user-friendly graphic interfaces for predicting, visualizing and analyzing host-microbe interactions. HMI-PRED 2.0 is available at https://hmipred.org/.


Assuntos
Proteínas , Software , Humanos , Proteínas/química , Interface Usuário-Computador
8.
Bioinformatics ; 38(5): 1455-1457, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34864889

RESUMO

SUMMARY: We present a web-based server for navigating and visualizing possible interactions between SARS-CoV-2 and human host proteins. The interactions are obtained from HMI_Pred which relies on the rationale that virus proteins mimic host proteins. The structural alignment of the viral protein with one side of the human protein-protein interface determines the mimicry. The mimicked human proteins and predicted interactions, and the binding sites are presented. The user can choose one of the 18 SARS-CoV-2 protein structures and visualize the potential 3D complexes it forms with human proteins. The mimicked interface is also provided. The user can superimpose two interacting human proteins in order to see whether they bind to the same site or different sites on the viral protein. The server also tabulates all available mimicked interactions together with their match scores and number of aligned residues. This is the first server listing and cataloging all interactions between SARS-CoV-2 and human protein structures, enabled by our innovative interface mimicry strategy. AVAILABILITY AND IMPLEMENTATION: The server is available at https://interactome.ku.edu.tr/sars/.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imageamento Tridimensional , Mapeamento de Interação de Proteínas , Proteínas Virais , Mimetismo Molecular
9.
J Med Virol ; 95(1): e28132, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36068653

RESUMO

The maintenance of vaginal microbiota is an important factor to achieve optimum pregnancy outcomes. The study aims to describe the alterations in the composition of vaginal microbiota in pregnant women with coronavirus disease 2019 (COVID-19). This was a prospective case-control study. Vaginal swabs were collected from uninfected pregnant women (n = 28) and pregnant women with COVID-19 (n = 19) during the active phase of infection and within a month after recovering from infection. The vaginal microbiota on the swabs was examined by 16S rRNA gene sequencing. Shannon index indicates that alpha diversity is significantly higher in women with COVID-19 (p = 0.012). There was a significant decrease in Firmicutes (p = 0.014) with an increase in Bacteroidota (p = 0.018) phyla and a decrease in Lactobacillus (p = 0.007) genus in women with COVID-19 than those of uninfected pregnant women. The relative abundance of L. crispatus, L. iners, L. gasseri, and L. jensenii were lower in the COVID-19 group than in uninfected pregnant women. In subgroup analysis, the amount of Ureaplasma spp. was higher in women with moderate/severe than those of asymptomatic/mild disease (p = 0.036). The study revealed that vaginal dysbiosis with low abundance of Lactobacillus species occurred in pregnant women infected with severe acute respiratory syndrome coronavirus-2. These findings may lead to new studies to elucidate the risk of pregnancy adverse outcomes related to COVID-19.


Assuntos
COVID-19 , Microbiota , Feminino , Gravidez , Humanos , Gestantes , RNA Ribossômico 16S/genética , Estudos de Casos e Controles , Vagina , Lactobacillus/genética , Microbiota/genética
10.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674792

RESUMO

Alzheimer's disease (AD) is known to be caused by amyloid ß-peptide (Aß) misfolded into ß-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in Aß toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing Aß1-42. We identified 81 mammalian orthologue genes that enhance Aß1-42 toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by Aß oligomers (oAß). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oAß1-42, whereas SURF4 overexpression induced Aß1-42 cytotoxicity. In summary, we identified new enhancer and protective activities for Aß toxicity and showed that SURF4 contributes to oAß1-42 neurotoxicity by decreasing SOCE activity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Cálcio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Morte Celular , Canais de Cálcio/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
11.
Biophys J ; 120(10): 1994-2008, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33775637

RESUMO

Akt plays a key role in the Ras/PI3K/Akt/mTOR signaling pathway. In breast cancer, Akt translocation to the plasma membrane is enabled by the interaction of its pleckstrin homology domain (PHD) with calmodulin (CaM). At the membrane, the conformational change promoted by PIP3 releases CaM and facilitates Thr308 and Ser473 phosphorylation and activation. Here, using modeling and molecular dynamics simulations, we aim to figure out how CaM interacts with Akt's PHD at the atomic level. Our simulations show that CaM-PHD interaction is thermodynamically stable and involves a ß-strand rather than an α-helix, in agreement with NMR data, and that electrostatic and hydrophobic interactions are critical. The PHD interacts with CaM lobes; however, multiple modes are possible. IP4, the polar head of PIP3, weakens the CaM-PHD interaction, implicating the release mechanism at the plasma membrane. Recently, we unraveled the mechanism of PI3Kα activation at the atomistic level and the structural basis for Ras role in the activation. Here, our atomistic structural data clarify the mechanism of how CaM interacts, delivers, and releases Akt-the next node in the Ras/PI3K pathway-at the plasma membrane.


Assuntos
Calmodulina , Domínios de Homologia à Plecstrina , Calmodulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
12.
PLoS Comput Biol ; 15(9): e1006789, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527881

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor. Molecular heterogeneity is a hallmark of GBM tumors that is a barrier in developing treatment strategies. In this study, we used the nonsynonymous mutations of GBM tumors deposited in The Cancer Genome Atlas (TCGA) and applied a systems level approach based on biophysical characteristics of mutations and their organization in patient-specific subnetworks to reduce inter-patient heterogeneity and to gain potential clinically relevant insights. Approximately 10% of the mutations are located in "patches" which are defined as the set of residues spatially in close proximity that are mutated across multiple patients. Grouping mutations as 3D patches reduces the heterogeneity across patients. There are multiple patches that are relatively small in oncogenes, whereas there are a small number of very large patches in tumor suppressors. Additionally, different patches in the same protein are often located at different domains that can mediate different functions. We stratified the patients into five groups based on their potentially affected pathways that are revealed from the patient-specific subnetworks. These subnetworks were constructed by integrating mutation profiles of the patients with the interactome data. Network-guided clustering showed significant association between the groups and patient survival (P-value = 0.0408). Also, each group carries a set of signature 3D mutation patches that affect predominant pathways. We integrated drug sensitivity data of GBM cell lines with the mutation patches and the patient groups to analyze the possible therapeutic outcome of these patches. We found that Pazopanib might be effective in Group 3 by targeting CSF1R. Additionally, inhibiting ATM that is a mediator of PTEN phosphorylation may be ineffective in Group 2. We believe that from mutations to networks and eventually to clinical and therapeutic data, this study provides a novel perspective in the network-guided precision medicine.


Assuntos
Neoplasias Encefálicas/genética , Análise por Conglomerados , Biologia Computacional/métodos , Glioblastoma/genética , Mutação/genética , Neoplasias Encefálicas/epidemiologia , Mapeamento Cromossômico , Glioblastoma/epidemiologia , Humanos , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Medicina de Precisão/métodos
13.
J Biol Chem ; 293(10): 3685-3699, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358323

RESUMO

IQ motif-containing GTPase-activating proteins (IQGAPs) are scaffolding proteins playing central roles in cell-cell adhesion, polarity, and motility. The Rho GTPases Cdc42 and Rac1, in their GTP-bound active forms, interact with all three human IQGAPs. The IQGAP-Cdc42 interaction promotes metastasis by enhancing actin polymerization. However, despite their high sequence identity, Cdc42 and Rac1 differ in their interactions with IQGAP. Two Cdc42 molecules can bind to the Ex-domain and the RasGAP site of the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP and promote IQGAP dimerization. Only one Rac1 molecule might bind to the RasGAP site of GRD and may not facilitate the dimerization, and the exact mechanism of Cdc42 and Rac1 binding to IQGAP is unclear. Using all-atom molecular dynamics simulations, site-directed mutagenesis, and Western blotting, we unraveled the detailed mechanisms of Cdc42 and Rac1 interactions with IQGAP2. We observed that Cdc42 binding to the Ex-domain of GRD of IQGAP2 (GRD2) releases the Ex-domain at the C-terminal region of GRD2, facilitating IQGAP2 dimerization. Cdc42 binding to the Ex-domain promoted allosteric changes in the RasGAP site, providing a binding site for the second Cdc42 in the RasGAP site. Of note, the Cdc42 "insert loop" was important for the interaction of the first Cdc42 with the Ex-domain. By contrast, differences in Rac1 insert-loop sequence and structure precluded its interaction with the Ex-domain. Rac1 could bind only to the RasGAP site of apo-GRD2 and could not facilitate IQGAP2 dimerization. Our detailed mechanistic insights help decipher how Cdc42 can stimulate actin polymerization in metastasis.


Assuntos
Modelos Moleculares , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Regulação Alostérica , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/genética
14.
Funct Integr Genomics ; 19(5): 729-742, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31044344

RESUMO

Previous studies have demonstrated that deletion of cryptochrome (Cry) genes protects p53-/- mutant mice from the early onset of cancer and extends their median life-span by about 1.5-fold. Subsequent in vitro studies had revealed that deletion of Crys enhances apoptosis in response to UV damage through activation of p73 and inactivation of GSK3ß. However, it was not known at the transcriptome-wide level how deletion of Crys delays the onset of cancer in p53-/- mutant mice. In this study, the RNA-seq approach was taken to uncover the differentially expressed genes (DEGs) and pathways following UV-induced DNA damage in p53-/- and p53-/-Cry1-/-Cry2-/- mouse skin fibroblasts. Gene set enrichment analysis with the DEGs demonstrated enrichment in immune surveillance-associated genes regulated by IFN-γ and genes involved in TNFα signaling via NF-κB. Furthermore, protein network analysis enabled identification of DEGs p21, Sirt1, and Jun as key players, along with their interacting partners. It was also observed that the DEGs contained a high ratio of non-coding transcripts. Collectively, the present study suggests new genes in NF-κB regulation and IFN-γ response, as well as non-coding RNAs, may contribute to delaying the onset of cancer in p53-/-Cry1-/-Cry2-/- mice and increasing the life-span of these animals compared to p53-/- mice.


Assuntos
Apoptose , Carcinogênese/patologia , Criptocromos/fisiologia , Dano ao DNA , Neoplasias Experimentais/patologia , Transcriptoma , Proteína Supressora de Tumor p53/fisiologia , Animais , Carcinogênese/metabolismo , Carcinogênese/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Camundongos , Camundongos Knockout , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/metabolismo , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Raios Ultravioleta
15.
Bioinformatics ; 34(17): i795-i801, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423104

RESUMO

Motivation: Single amino acid variations (SAVs) in protein-protein interaction (PPI) sites play critical roles in diseases. PPI sites (interfaces) have a small subset of residues called hot spots that contribute significantly to the binding energy, and they may form clusters called hot regions. Singlet hot spots are the single amino acid hot spots outside of the hot regions. The distribution of SAVs on the interface residues may be related to their disease association. Results: We performed statistical and structural analyses of SAVs with literature curated experimental thermodynamics data, and demonstrated that SAVs which destabilize PPIs are more likely to be found in singlet hot spots rather than hot regions and energetically less important interface residues. In contrast, non-hot spot residues are significantly enriched in neutral SAVs, which do not affect PPI stability. Surprisingly, we observed that singlet hot spots tend to be enriched in disease-causing SAVs, while benign SAVs significantly occur in non-hot spot residues. Our work demonstrates that SAVs in singlet hot spot residues have significant effect on protein stability and function. Availability and implementation: The dataset used in this paper is available as Supplementary Material. The data can be found at http://prism.ccbb.ku.edu.tr/data/sav/ as well. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Aminoácidos/química , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Humanos , Ligação Proteica , Conformação Proteica , Software , Termodinâmica
16.
Chem Rev ; 116(8): 4884-909, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27074302

RESUMO

Identification of protein-protein interactions (PPIs) is at the center of molecular biology considering the unquestionable role of proteins in cells. Combinatorial interactions result in a repertoire of multiple functions; hence, knowledge of PPI and binding regions naturally serve to functional proteomics and drug discovery. Given experimental limitations to find all interactions in a proteome, computational prediction/modeling of protein interactions is a prerequisite to proceed on the way to complete interactions at the proteome level. This review aims to provide a background on PPIs and their types. Computational methods for PPI predictions can use a variety of biological data including sequence-, evolution-, expression-, and structure-based data. Physical and statistical modeling are commonly used to integrate these data and infer PPI predictions. We review and list the state-of-the-art methods, servers, databases, and tools for protein-protein interaction prediction.


Assuntos
Mineração de Dados , Bases de Dados de Proteínas/estatística & dados numéricos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteoma/química , Sequência de Aminoácidos , Sítios de Ligação , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Homologia de Sequência de Aminoácidos , Software
17.
Chem Rev ; 116(11): 6607-65, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-26815308

RESUMO

Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.


Assuntos
Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Regulação Alostérica , Domínio Catalítico , Guanosina Trifosfato/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas ras/química
18.
Biochim Biophys Acta ; 1860(11 Pt B): 2646-55, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27208423

RESUMO

BACKGROUND: The tumor necrosis factor receptor (TNFR) associated factor 3 (TRAF3) is a key node in innate and adaptive immune signaling pathways. TRAF3 negatively regulates the activation of the canonical and non-canonical NF-κB pathways and is one of the key proteins in antiviral immunity. SCOPE OF REVIEW: Here we provide a structural overview of TRAF3 signaling in terms of its competitive binding and consequences to the cellular network. For completion, we also include molecular mimicry of TRAF3 physiological partners by some viral proteins. MAJOR CONCLUSIONS: By out-competing host partners, viral proteins aim to subvert TRAF3 antiviral action. Mechanistically, dynamic, competitive binding by the organism's own proteins and same-site adaptive pathogen mimicry follow the same conformational selection principles. GENERAL SIGNIFICANCE: Our premise is that irrespective of the eliciting event - physiological or acquired pathogenic trait - pathway activation (or suppression) may embrace similar conformational principles. However, even though here we largely focus on competitive binding at a shared site, similar to physiological signaling other pathogen subversion mechanisms can also be at play. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.


Assuntos
Ligação Competitiva/fisiologia , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/metabolismo , Humanos , Mimetismo Molecular/fisiologia , NF-kappa B/metabolismo , Ligação Proteica/fisiologia , Proteínas Virais/metabolismo , Viroses/metabolismo
19.
Biochem J ; 473(12): 1719-32, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27057007

RESUMO

Are the dimer structures of active Ras isoforms similar? This question is significant since Ras can activate its effectors as a monomer; however, as a dimer, it promotes Raf's activation and MAPK (mitogen-activated protein kinase) cell signalling. In the present study, we model possible catalytic domain dimer interfaces of membrane-anchored GTP-bound K-Ras4B and H-Ras, and compare their conformations. The active helical dimers formed by the allosteric lobe are isoform-specific: K-Ras4B-GTP favours the α3 and α4 interface; H-Ras-GTP favours α4 and α5. Both isoforms also populate a stable ß-sheet dimer interface formed by the effector lobe; a less stable ß-sandwich interface is sustained by salt bridges of the ß-sheet side chains. Raf's high-affinity ß-sheet interaction is promoted by the active helical interface. Collectively, Ras isoforms' dimer conformations are not uniform; instead, the isoform-specific dimers reflect the favoured interactions of the HVRs (hypervariable regions) with cell membrane microdomains, biasing the effector-binding site orientations, thus isoform binding selectivity.


Assuntos
Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica/fisiologia , Proteínas ras/química , Proteínas ras/metabolismo , Sequência de Aminoácidos , Cisteína/química , Cisteína/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/genética , Multimerização Proteica/genética , Estrutura Secundária de Proteína , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas ras/genética
20.
Mol Cell Proteomics ; 13(3): 887-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24445405

RESUMO

Most (if not all) proteins function when associated in multimolecular assemblies. Attaining the structures of protein assemblies at the atomic scale is an important aim of structural biology. Experimentally, structures are increasingly available, and computations can help bridge the resolution gap between high- and low-resolution scales. Existing computational methods have made substantial progress toward this aim; however, current approaches are still limited. Some involve manual adjustment of experimental data; some are automated docking methods, which are computationally expensive and not applicable to large-scale proteome studies; and still others exploit the symmetry of the complexes and thus are not applicable to nonsymmetrical complexes. Our study aims to take steps toward overcoming these limitations. We have developed a strategy for the construction of protein assemblies computationally based on binary interactions predicted by a motif-based protein interaction prediction tool, PRISM (Protein Interactions by Structural Matching). Previously, we have shown its power in predicting pairwise interactions. Here we take a step toward multimolecular assemblies, reflecting the more prevalent cellular scenarios. With this method we are able to construct homo-/hetero-complexes and symmetric/asymmetric complexes without a limitation on the number of components. The method considers conformational changes and is applicable to large-scale studies. We also exploit electron microscopy density maps to select a solution from among the predictions. Here we present the method, illustrate its results, and highlight its current limitations.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteoma/química , Proteoma/metabolismo , Algoritmos , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA