Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 4): 877-887, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771778

RESUMO

Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale.

2.
Angew Chem Int Ed Engl ; 62(23): e202300943, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893078

RESUMO

Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.

3.
J Synchrotron Radiat ; 28(Pt 5): 1583-1597, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475305

RESUMO

For reconstructing large tomographic datasets fast, filtered backprojection-type or Fourier-based algorithms are still the method of choice, as they have been for decades. These robust and computationally efficient algorithms have been integrated in a broad range of software packages. The continuous mathematical formulas used for image reconstruction in such algorithms are unambiguous. However, variations in discretization and interpolation result in quantitative differences between reconstructed images, and corresponding segmentations, obtained from different software. This hinders reproducibility of experimental results, making it difficult to ensure that results and conclusions from experiments can be reproduced at different facilities or using different software. In this paper, a way to reduce such differences by optimizing the filter used in analytical algorithms is proposed. These filters can be computed using a wrapper routine around a black-box implementation of a reconstruction algorithm, and lead to quantitatively similar reconstructions. Use cases for this approach are demonstrated by computing implementation-adapted filters for several open-source implementations and applying them to simulated phantoms and real-world data acquired at the synchrotron. Our contribution to a reproducible reconstruction step forms a building block towards a fully reproducible synchrotron tomography data processing pipeline.

4.
J Am Chem Soc ; 142(5): 2145-2149, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31923358

RESUMO

We report the application of lanthanide-binding tags (LBTs) for two- and three-dimensional X-ray imaging of individual proteins in cells with a sub-15 nm beam. The method combines encoded LBTs, which are tags of minimal size (ca. 15-20 amino acids) affording high-affinity lanthanide ion binding, and X-ray fluorescence microscopy (XFM). This approach enables visualization of LBT-tagged proteins while simultaneously measuring the elemental distribution in cells at a spatial resolution necessary for visualizing cell membranes and eukaryotic subcellular organelles.


Assuntos
Imageamento Tridimensional/métodos , Elementos da Série dos Lantanídeos/metabolismo , Proteínas/química , Espectrometria por Raios X/métodos , Sequência de Aminoácidos , Ligação Proteica
5.
J Opt Soc Am A Opt Image Sci Vis ; 37(3): 422-434, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32118926

RESUMO

Synchrotron-based x-ray tomography is a noninvasive imaging technique that allows for reconstructing the internal structure of materials at high spatial resolutions from tens of micrometers to a few nanometers. In order to resolve sample features at smaller length scales, however, a higher radiation dose is required. Therefore, the limitation on the achievable resolution is set primarily by noise at these length scales. We present TomoGAN, a denoising technique based on generative adversarial networks, for improving the quality of reconstructed images for low-dose imaging conditions. We evaluate our approach in two photon-budget-limited experimental conditions: (1) sufficient number of low-dose projections (based on Nyquist sampling), and (2) insufficient or limited number of high-dose projections. In both cases, the angular sampling is assumed to be isotropic, and the photon budget throughout the experiment is fixed based on the maximum allowable radiation dose on the sample. Evaluation with both simulated and experimental datasets shows that our approach can significantly reduce noise in reconstructed images, improving the structural similarity score of simulation and experimental data from 0.18 to 0.9 and from 0.18 to 0.41, respectively. Furthermore, the quality of the reconstructed images with filtered back projection followed by our denoising approach exceeds that of reconstructions with the simultaneous iterative reconstruction technique, showing the computational superiority of our approach.

6.
J Synchrotron Radiat ; 26(Pt 1): 194-204, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655485

RESUMO

Full-field transmission X-ray microscopy (TXM) is a well established technique, available at various synchrotron beamlines around the world as well as by laboratory benchtop devices. One of the major TXM challenges, due to its nanometre-scale resolution, is the overall instrument stability during the acquisition of the series of tomographic projections. The ability to correct for vertical and horizontal distortions of each projection image during acquisition is necessary in order to achieve the effective 3D spatial resolution. The effectiveness of such an image alignment is also heavily influenced by the absorption properties and strong contrast of specific features in the scanned sample. Here it is shown that nanoporous gold (NPG) can be used as an ideal 3D test pattern for evaluating and optimizing the performance of a TXM instrument for hard X-rays at a synchrotron beamline. Unique features of NPG, such as hierarchical structures at multiple length scales and high absorbing capabilities, makes it an ideal choice for characterization, which involves a combination of a rapid-alignment algorithm applied on the acquired projections followed by the extraction of a set of both 2D- and 3D-descriptive image parameters. This protocol can be used for comparing the efficiency of TXM instruments at different synchrotron beamlines in the world or benchtop devices, based on a reference library of scanned NPG samples, containing information about the estimated horizontal and vertical alignment values, 2D qualitative parameters and quantitative 3D parameters. The possibility to tailor the ligament sizes of NPG to match the achievable resolution in combination with the high electron density of gold makes NPG an ideal 3D test pattern for evaluating the status and performance of a given synchrotron-based or benchtop-based TXM setup.

7.
Opt Express ; 27(6): 9128-9143, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052722

RESUMO

We present the extension of ptychography for three-dimensional object reconstruction in a tomography setting. We describe the alternating direction method of multipliers (ADMM) as a generic reconstruction framework to efficiently solve the nonlinear optimization problem. In this framework, the ADMM breaks the joint reconstruction problem into two well-defined subproblems: ptychographic phase retrieval and tomographic reconstruction. In this paper, we use the gradient descent algorithm to solve both problems and demonstrate the efficiency of the proposed approach through numerical simulations. Further, we show that the proposed joint approach relaxes existing requirements for lateral probe overlap in conventional ptychography. Thus, it can allow more flexible data acquisition.

8.
Opt Lett ; 44(17): 4331-4334, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465395

RESUMO

As x-ray microscopy is pushed into the nanoscale with the advent of more bright and coherent x-ray sources, associated improvement in spatial resolution becomes highly vulnerable to geometrical errors and uncertainties during data collection. We address a form of error in tomography experiments, namely, the drift between projections during the tomographic scan. Our proposed method can simultaneously recover the drift, while tomographically reconstructing the specimen based on a joint iterative optimization scheme. This approach utilizes the correlation provided from different view angles and different signals. While generally applicable, we demonstrate our method on x-ray fluorescence tomography from a tissue specimen and compare the reconstruction quality with conventional methods.

9.
J Synchrotron Radiat ; 25(Pt 4): 1144-1152, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979176

RESUMO

The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.

10.
J Opt Soc Am A Opt Image Sci Vis ; 35(11): 1871-1879, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461846

RESUMO

The penetration power of x rays allows one to image large objects, while their short wavelength allows for high spatial resolution. As a result, with synchrotron sources, one has the potential to obtain tomographic images of centimeter-sized specimens with sub-micrometer pixel sizes. However, limitations on beam and detector size make it difficult to acquire such data of this sort in a single take, necessitating strategies for combining data from multiple regions. One strategy is to acquire a tiled set of local tomograms by rotating the specimen around each of the local tomogram center positions. Another strategy, sinogram oriented acquisition, involves the collection of projections at multiple offset positions from the rotation axis followed by data merging and reconstruction. We have carried out a simulation study to compare these two approaches in terms of radiation dose applied to the specimen, and reconstructed image quality. Local tomography acquisition involves an easier data alignment problem, and immediate viewing of subregions before the entire dataset has been acquired. Sinogram oriented acquisition involves a more difficult data assembly and alignment procedure, and it is more sensitive to accumulative registration error. However, sinogram oriented acquisition is more dose efficient, involves fewer translation motions of the object, and avoids certain artifacts of local tomography.

11.
Appl Opt ; 57(30): 8780-8789, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30461860

RESUMO

We investigate the effects of angular diversity on image-reconstruction quality of scanning-probe x-ray tomography for both fly- and step-mode data collection. We propose probe-coverage maps as a tool for both visualizing and quantifying the distribution of probe interactions with the object. We show that data sampling with more angular diversity yields better tomographic image reconstruction as long as it does not come at the cost of not covering some voxels in the object. Therefore, for fly-mode data collection, rotation-as-fast-axis (RAFA) trajectories are superior to raster or other non-RAFA trajectories because they allow for the increasing of angular diversity without sacrificing spatial coverage uniformity. In contrast, for step-mode data collection and a fixed measurement budget, increasing angular diversity can come at the cost of not covering some voxels, and may not be desired. This study has implications for how scanning-probe microscopes should be collecting data in order to make the most of limited resources.

12.
Opt Lett ; 42(16): 3169-3172, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809899

RESUMO

A generalization of the ptychographic phase problem is presented for recovering refractive properties of a three-dimensional object in a tomography setting. This approach, which ignores the lateral overlapping probe requirements in existing ptychography algorithms, can enable the reconstruction of objects using highly flexible acquisition patterns and pave the way for sparse and rapid data collection with lower radiation exposure.

13.
J Synchrotron Radiat ; 21(Pt 6): 1224-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343788

RESUMO

Data Exchange is a simple data model designed to interface, or `exchange', data among different instruments, and to enable sharing of data analysis tools. Data Exchange focuses on technique rather than instrument descriptions, and on provenance tracking of analysis steps and results. In this paper the successful application of the Data Exchange model to a variety of X-ray techniques, including tomography, fluorescence spectroscopy, fluorescence tomography and photon correlation spectroscopy, is described.

14.
Opt Lett ; 38(9): 1461-3, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632518

RESUMO

In this Letter, we present a single-step method to simultaneously retrieve x-ray absorption and phase images valid for a broad range of imaging energies and material properties. Our method relies on the availability of spectrally resolved intensity measurements, which is now possible using semiconductor x-ray photon counting detectors. The retrieval method is derived and presented, with results showing good agreement.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Absorção , Raios X
15.
Rev Sci Instrum ; 94(1): 013702, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725602

RESUMO

To provide optimal depth resolution with a coded-aperture Laue diffraction microscope, an accurate position of the coded-aperture and its scanning geometry need to be known. However, finding the geometry by trial and error is a time-consuming and often challenging process because of the large number of parameters involved. In this paper, we propose an optimization approach to automate the focusing process after data is collected. We demonstrate the robustness and efficiency of the proposed approach with experimental data taken at a synchrotron facility.

16.
Nanoscale ; 15(13): 6396-6407, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36924128

RESUMO

Nanoparticle-based platforms are gaining strong interest in plant biology and bioenergy research to monitor and control biological processes in whole plants. However, in vivo monitoring of biomolecules using nanoparticles inside plant cells remains challenging due to the impenetrability of the plant cell wall to nanoparticles beyond the exclusion limits (5-20 nm). To overcome this physical barrier, we have designed unique bimetallic silver-coated gold nanorods (AuNR@Ag) capable of entering plant cells, while conserving key plasmonic properties in the near-infrared (NIR). To demonstrate cellular internalization and tracking of the nanorods inside plant tissue, we used a comprehensive multimodal imaging approach that included transmission electron microscopy (TEM), confocal fluorescence microscopy, two-photon luminescence (TPL), X-ray fluorescence microscopy (XRF), and photoacoustics imaging (PAI). We successfully acquired SERS signals of nanorods in vivo inside plant cells of tobacco leaves. On the same leaf samples, we applied orthogonal imaging methods, TPL and PAI techniques for in vivo imaging of the nanorods. This study first demonstrates the intracellular internalization of AuNR@Ag inside whole plant systems for in vivo SERS analysis in tobacco cells. This work demonstrates the potential of this nanoplatform as a new nanotool for intracellular in vivo biosensing for plant biology.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanotubos , Células Vegetais , Imagem Multimodal , Ouro , Análise Espectral Raman/métodos
17.
Sci Rep ; 12(1): 5334, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351971

RESUMO

While the advances in synchrotron light sources, together with the development of focusing optics and detectors, allow nanoscale ptychographic imaging of materials and biological specimens, the corresponding experiments can yield terabyte-scale volumes of data that can impose a heavy burden on the computing platform. Although graphics processing units (GPUs) provide high performance for such large-scale ptychography datasets, a single GPU is typically insufficient for analysis and reconstruction. Several works have considered leveraging multiple GPUs to accelerate the ptychographic reconstruction. However, most of these works utilize only the Message Passing Interface to handle the communications between GPUs. This approach poses inefficiency for a hardware configuration that has multiple GPUs in a single node, especially while reconstructing a single large projection, since it provides no optimizations to handle the heterogeneous GPU interconnections containing both low-speed (e.g., PCIe) and high-speed links (e.g., NVLink). In this paper, we provide an optimized intranode multi-GPU implementation that can efficiently solve large-scale ptychographic reconstruction problems. We focus on the maximum likelihood reconstruction problem using a conjugate gradient (CG) method for the solution and propose a novel hybrid parallelization model to address the performance bottlenecks in the CG solver. Accordingly, we have developed a tool, called PtyGer (Ptychographic GPU(multiple)-based reconstruction), implementing our hybrid parallelization model design. A comprehensive evaluation verifies that PtyGer can fully preserve the original algorithm's accuracy while achieving outstanding intranode GPU scalability.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
18.
Sci Rep ; 11(1): 17740, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489500

RESUMO

Computed tomography is a well-established x-ray imaging technique to reconstruct the three-dimensional structure of objects. It has been used extensively in a variety of fields, from diagnostic imaging to materials and biological sciences. One major challenge in some applications, such as in electron or x-ray tomography systems, is that the projections cannot be gathered over all the angles due to the sample holder setup or shape of the sample. This results in an ill-posed problem called the limited angle reconstruction problem. Typical image reconstruction in this setup leads to distortion and artifacts, thereby hindering a quantitative evaluation of the results. To address this challenge, we use a generative model to effectively constrain the solution of a physics-based approach. Our approach is self-training that can iteratively learn the nonlinear mapping from partial projections to the scanned object. Because our approach combines the data likelihood and image prior terms into a single deep network, it is computationally tractable and improves performance through an end-to-end training. We also complement our approach with total-variation regularization to handle high-frequency noise in reconstructions and implement a solver based on alternating direction method of multipliers. We present numerical results for various degrees of missing angle range and noise levels, which demonstrate the effectiveness of the proposed approach.

19.
Adv Mater ; 33(21): e2008653, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33871108

RESUMO

In the last decade, transmission X-ray microscopes (TXMs) have come into operation in most of the synchrotrons worldwide. They have proven to be outstanding tools for non-invasive ex and in situ 3D characterization of materials at the nanoscale across varying range of scientific applications. However, their spatial resolution has not improved in many years, while newly developed functional materials and microdevices with enhanced performances exhibit nanostructures always finer. Here, optomechanical breakthroughs leading to fast 3D tomographic acquisitions (85 min) with sub-10 nm spatial resolution, narrowing the gap between X-ray and electron microscopy, are reported. These new achievements are first validated with 3D characterizations of nanolithography objects corresponding to ultrahigh-aspect-ratio hard X-ray zone plates. Then, this powerful technique is used to investigate the morphology and conformality of nanometer-thick film electrodes synthesized by atomic layer deposition and magnetron sputtering deposition methods on 3D silicon scaffolds for electrochemical energy storage applications.

20.
Sci Adv ; 6(13): eaay3700, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258397

RESUMO

Conventional tomographic reconstruction algorithms assume that one has obtained pure projection images, involving no within-specimen diffraction effects nor multiple scattering. Advances in x-ray nanotomography are leading toward the violation of these assumptions, by combining the high penetration power of x-rays, which enables thick specimens to be imaged, with improved spatial resolution that decreases the depth of focus of the imaging system. We describe a reconstruction method where multiple scattering and diffraction effects in thick samples are modeled by multislice propagation and the 3D object function is retrieved through iterative optimization. We show that the same proposed method works for both full-field microscopy and for coherent scanning techniques like ptychography. Our implementation uses the optimization toolbox and the automatic differentiation capability of the open-source deep learning package TensorFlow, demonstrating a straightforward way to solve optimization problems in computational imaging with flexibility and portability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA