Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(48): 15743-15750, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934002

RESUMO

We report the encapsulation of platinum species in highly siliceous chabazite (CHA) crystallized in the presence of N,N,N-trimethyl-1-adamantammonium and a thiol-stabilized Pt complex. When compared to Pt/SiO2 or Pt-containing Al-rich zeolites, the materials in this work show enhanced stability toward metal sintering in a variety of industrial conditions, including H2, O2, and H2O. Remarkably, temperatures in the range 650-750 °C can be reached without significant sintering of the noble metal. Detailed structural determinations by X-ray absorption spectroscopy and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy demonstrate subtle control of the supported metal structures from ∼1 nm nanoparticles to site-isolated single Pt atoms via reversible interconversion of one species into another in reducing and oxidizing atmospheres. The combined used of microscopy and spectroscopy is critical to understand these surface-mediated transformations. When tested in hydrogenation reactions, Pt/CHA converts ethylene (∼80%) but not propylene under identical conditions, in contrast to Pt/SiO2, which converts both at similar rates. These differences are attributed to the negligible diffusivity of propylene through the small-pore zeolite and provide final evidence of the metal encapsulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA