Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 32(1): 167-181, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261875

RESUMO

The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.


Assuntos
Luz , Perciformes , Animais , Peixes/genética , Visão Ocular/genética , Retina/metabolismo , Perciformes/genética , Opsinas/genética , Opsinas/metabolismo , Opsinas de Bastonetes/genética
2.
J Fish Biol ; 102(2): 532-536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36416762

RESUMO

Indo-Pacific lionfishes generally exhibit cryptic behaviours and so can be missed when conducting non-targeted surveys. Here, the authors report the results from targeted surveys of lionfish at Moorea, French Polynesia. Lionfish from three species (Pterois antennata, Pterois radiata, Dendrochirus biocellatus) were observed at a mean density of 267 individuals ha-1 . This is substantially higher than previous estimates from the same area (Moorea) and represents the highest reported density of lionfishes from their Pacific range. Overall, this study highlights the importance of targeted survey techniques for detecting cryptic species on coral reefs.


Assuntos
Censos , Perciformes , Animais , Espécies Introduzidas , Recifes de Corais , Comportamento Predatório
3.
Reg Environ Change ; 23(1): 16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573171

RESUMO

During the first COVID-19 lockdown in 2020, levels of coastal activities such as subsistence fishing and marine tourism declined rapidly throughout French Polynesia. Here, we examined whether the reduction in coastal use led to changes in fish density around the island of Moorea. Two natural coastal marine habitats (bare sand and mangrove) and one type of man-made coastal structure (embankment) were monitored on the west coast of the island before and after the first COVID-19 lockdown. At the end of the lockdown (May 2020), significantly higher apparent densities of juvenile and adult fish, including many harvested species, were recorded compared to levels documented in 2019 at the same period (April 2019). Fish densities subsequently declined as coastal activities recovered; however, 2 months after the end of the lockdown (July 2020), densities were still higher than they were in July 2019 with significant family-specific variation across habitats. This study highlights that short-term reductions in human activity can have a positive impact on coastal fish communities and may encourage future management policy that minimizes human impacts on coastline habitats. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-02011-0.

4.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929495

RESUMO

Ontogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system.


Assuntos
Visão de Cores , Retina , Animais , Recifes de Corais , Peixes/anatomia & histologia , Células Fotorreceptoras Retinianas Cones
5.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929500

RESUMO

Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system.


Assuntos
Opsinas dos Cones , Animais , Opsinas dos Cones/metabolismo , Recifes de Corais , Peixes/fisiologia , Expressão Gênica , Larva/genética , Larva/metabolismo , Opsinas/genética , Opsinas/metabolismo , Filogenia , Retina/fisiologia
6.
J Fish Biol ; 95(5): 1355-1358, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31568585

RESUMO

Our study highlights the effect of the macroalgae Asparagopsis taxiformis on the feeding behaviour of the tropical surgeonfish Acanthurus triostegus. The presence of A. taxiformis chemical cues reduced A. triostegus feeding, suggesting that the presence of this algae could affect not only the survival of fish in the post-larval stage, but also alter the grazing pressure on coral reefs.


Assuntos
Comportamento Animal , Perciformes/fisiologia , Alga Marinha , Animais , Conservação dos Recursos Naturais , Recifes de Corais , Sinais (Psicologia) , Comportamento Alimentar , Larva/fisiologia , Perciformes/metabolismo
7.
Chemosphere ; 208: 469-475, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29886335

RESUMO

Dory, the animated surgeonfish created by the Pixar Animation studios, famously suffered from short-term memory loss leading to many adventures. In reality, many fishes have excellent cognitive abilities and are able to learn and retain important information such as the identity of predators. However, if and how cognition can be affected by anthropogenically altered oceanic conditions is poorly understood. Here, we examine the effect of a widely used pesticide, chlorpyrifos, on the retention of acquired predator recognition in post-larval stage of the surgeonfish Acanthurus triostegus. Through associative learning, post-larvae of A. triostegus were first observed to forage significantly less in the presence of conspecific alarm cues and alarm cues associated to a predator's odor. The retention of this anti-predator behavior was estimated to last between 2 and 5 days in the absence of pesticide. However, environmentally-relevant concentrations of chlorpyrifos (1 µg.L-1) induced the loss of this acquired predator recognition. This reduced ability to recognize learned predators is discussed as it may lead to more vulnerable fish communities in coastal areas subjected to organophosphate pesticide pollution.


Assuntos
Peixes/fisiologia , Larva/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Praguicidas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Animais , Larva/fisiologia
8.
Sci Rep ; 8(1): 9283, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915303

RESUMO

Understanding the relationship between coral reef condition and recruitment potential is vital for the development of effective management strategies that maintain coral cover and biodiversity. Coral larvae (planulae) have been shown to use certain sensory cues to orient towards settlement habitats (e.g. the odour of live crustose coralline algae - CCA). However, the influence of auditory cues on coral recruitment, and any effect of anthropogenic noise on this process, remain largely unknown. Here, we determined the effect of protected reef (MPA), exploited reef (non-MPA) soundscapes, and a source of anthropogenic noise (boat) on the habitat preference for live CCA over dead CCA in the planula of two common Indo-Pacific coral species (Pocillopora damicornis and Acropora cytherea). Soundscapes from protected reefs significantly increased the phonotaxis of planulae of both species towards live CCA, especially when compared to boat noise. Boat noise playback prevented this preferential selection of live CCA as a settlement substrate. These results suggest that sources of anthropogenic noise such as motor boat can disrupt the settlement behaviours of coral planulae. Acoustic cues should be accounted for when developing management strategies aimed at maximizing larval recruitment to coral reefs.


Assuntos
Antozoários/fisiologia , Ecossistema , Ruído , Navios , Animais , Conservação dos Recursos Naturais , Polinésia
9.
Sci Rep ; 7(1): 9165, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831109

RESUMO

Lateralization, i.e. the preferential use of one side of the body, may convey fitness benefits for organisms within rapidly-changing environments, by optimizing separate and parallel processing of different information between the two brain hemispheres. In coral reef-fishes, the movement of larvae from planktonic to reef environments (recruitment) represents a major life-history transition. This transition requires larvae to rapidly identify and respond to sensory cues to select a suitable habitat that facilitates survival and growth. This 'recruitment' is critical for population persistence and resilience. In aquarium experiments, larval Acanthurus triostegus preferentially used their right-eye to investigate a variety of visual stimuli. Despite this, when held in in situ cages with predators, those larvae that previously favored their left-eye exhibited higher survival. These results support the "brain's right-hemisphere" theory, which predicts that the right-eye (i.e. left-hemisphere) is used to categorize stimuli while the left-eye (i.e. right-hemisphere) is used to inspect novel items and initiate rapid behavioral-responses. While these experiments confirm that being highly lateralized is ecologically advantageous, exposure to chlorpyrifos, a pesticide often inadvertently added to coral-reef waters, impaired visual-lateralization. This suggests that chemical pollutants could impair the brain function of larval fishes during a critical life-history transition, potentially impacting recruitment success.


Assuntos
Clorpirifos/efeitos adversos , Peixes/fisiologia , Praguicidas/efeitos adversos , Visão Ocular/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Recifes de Corais , Larva/efeitos dos fármacos
10.
PLoS One ; 12(6): e0178795, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28594864

RESUMO

For marine fishes with a bipartite life cycle, pelagic larval dispersal can shape the distribution, connectivity, composition and resilience of adult populations. Numerous studies of larval dispersal, and associated settlement and recruitment processes, have examined the relationship between population connectivity and oceanographic features. However, relatively little is known about spatial and temporal variation in the abundance of larvae settling among different reefs and the extent to which the species assemblage of larvae settling at one location is reflective of the assemblage in neighbouring areas. Here, using crest nets, which provide a non-selective measure of the total abundance and assemblage of larvae settling to a reef (i.e. larval supply), we collected larval coral reef fishes at five locations surrounding two spatially disparate French Polynesian islands: Moorea and Nengo-Nengo. Overall, larval settlement patterns were correlated with the lunar cycle, with larval abundance peaking during the new moon. Although there were some spatial differences in larval supply among the five monitored sites, settlement patterns were largely consistent, even at the species level, irrespective of factors such as coastline orientation or distance between sites. This study provides further insights into the mechanisms driving patterns of dispersal and settlement of larval fishes over large spatial scales.


Assuntos
Recifes de Corais , Peixes , Animais , Larva , Polinésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA