Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Chem ; 18(1): 144, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103926

RESUMO

The combination of hydrogel and fertilizer as slow release fertilizer hydrogel (SRFH) has become one of the most promising materials to overcome the shortcomings of conventional fertilizer by decreasing fertilizer loss rate, supplying nutrients sustainably, and lowering the frequency of irrigation. The hydrogel based on carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) (CMC/PAA) was synthesized. All materials, Vinasse, hydrogel (CMC/PAA) and (Vinasse/CMC-PAA) were characterized by FTIR, XRD, and SEM. The formed hydrogel was applied to control the salinity of Vinasse to use it as a cheap and economical fertilizer. The results showed that using the prepared hydrogel with Vinasse (V/CMC-PAA) as a slow-release organic fertilizer decreased the EC value through the first six hours from 1.77 to 0.35 mmohs/cm. Also, using V/CMC-PAA can control and keep the potassium as fertilizer for 50 days. The productivity per feddan from the sugar cane crop increased by about 15%, and the number of irrigations decreased from 5 to 4 times.

2.
Sci Rep ; 14(1): 1848, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253668

RESUMO

In the sugar industry, eliminating side impurities throughout the manufacturing process is the most significant obstacle to clarifying sugar solutions. Herein, magnetic chitosan (MCS) nanocomposite was Fabricated to be used as a biodegradable, environmentally friendly clarifying agent throughout the cane juice and sugar refining processes. Fe3O4 was synthesized using the coprecipitation procedure, and then MCS was combined using a cross-linking agent. Furthermore, 14.76 emu g-1 was the maximum saturation magnetization (Ms) value. Because MCS is magnetically saturated, it may be possible to employ an external magnetic field to separate the contaminant deposited on its surface. Additionally, zeta potential analysis showed outstanding findings for MCS with a maximum value of (+) 20.7 mV, with improvement in color removal % up to 44.8% using MCS with more than 24% in color removal % compared to the traditional clarification process. Moreover, utilizing MCS reduced turbidity from 167 to 1 IU. Overall, we determined that MCS nanocomposite exhibits considerable effectiveness in the clarifying process for different sugar solutions, performing as an eco-friendly bio-sorbent and flocculating material.

3.
Food Chem ; 415: 135603, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870210

RESUMO

The present paper aims to use natural biodegradable polymers of chitosan (CS) and cellulose (CEL) to synthesize green chitosan-cellulose (CS-CEL) nanocomposite as a new clarifying agent. This is the cutting-edge of the sugar industry's clarification process. The CS-CEL nanocomposite showed outstanding results in zeta potential analysis, with a maximum value (+) 57.73 mV, leading to remarkableresults in coloradsorption via electrostatic attraction. It was also observed that CS-CEL has high mechanical stability. When CS and CS-CEL nanocomposite were used in the clarification of sugarcane (MJ), the findings demonstrated an improvement in colorremoval of up to 8.7% using CS and 18.1%using CS-CEL nanocomposite compared to currently phosphotation clarification process. Also, Turbidity decreased using CS-CEL nanocomposite compared to the traditional phosphotation clarification process. Overall, we can conclude that CS-CEL nanocomposite has considerable efficiency in sugarcane juice clarification process as a green biodegradable adsorbent and flocculating material to produce sulfur-free sugar.


Assuntos
Quitosana , Nanocompostos , Celulose , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA