Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(12): 20049-20067, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381407

RESUMO

Holographic cloud probes provide unprecedented information on cloud particle density, size and position. Each laser shot captures particles within a large volume, where images can be computationally refocused to determine particle size and location. However, processing these holograms with standard methods or machine learning (ML) models requires considerable computational resources, time and occasional human intervention. ML models are trained on simulated holograms obtained from the physical model of the probe since real holograms have no absolute truth labels. Using another processing method to produce labels would be subject to errors that the ML model would subsequently inherit. Models perform well on real holograms only when image corruption is performed on the simulated images during training, thereby mimicking non-ideal conditions in the actual probe. Optimizing image corruption requires a cumbersome manual labeling effort. Here we demonstrate the application of the neural style translation approach to the simulated holograms. With a pre-trained convolutional neural network, the simulated holograms are "stylized" to resemble the real ones obtained from the probe, while at the same time preserving the simulated image "content" (e.g. the particle locations and sizes). With an ML model trained to predict particle locations and shapes on the stylized data sets, we observed comparable performance on both simulated and real holograms, obviating the need to perform manual labeling. The described approach is not specific to holograms and could be applied in other domains for capturing noise and imperfections in observational instruments to make simulated data more like real world observations.

2.
Risk Anal ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37939398

RESUMO

Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human-AI teaming perspectives on AI development similarly underscore. Co-development strategies may also help reconcile efforts to develop performance-based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences.

3.
J Adv Model Earth Syst ; 13(12): e2021MS002474, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35865716

RESUMO

The ocean mixed layer plays an important role in the coupling between the upper ocean and atmosphere across a wide range of time scales. Estimation of the variability of the ocean mixed layer is therefore important for atmosphere-ocean prediction and analysis. The increasing coverage of in situ Argo profile data allows for an increasingly accurate analysis of the mixed layer depth (MLD) variability associated with deviations from the seasonal climatology. However, sampling rates are not sufficient to fully resolve subseasonal ( < 90 day) MLD variability. Yet, many multivariate observations-based analyses include implicit modeled subseasonal MLD variability. One analysis method is optimal interpolation of in situ data, but the interior analysis can be improved by leveraging surface data with regression or variational approaches. Here, we demonstrate how machine learning methods and satellite sea surface temperature, salinity, and height facilitate MLD estimation in a pilot study of two regions: the mid-latitude southern Indian and the eastern equatorial Pacific Oceans. We construct multiple machine learning architectures to produce weekly 1/2° gridded MLD anomaly fields (relative to a monthly climatology) with uncertainty estimates. We test multiple traditional and probabilistic machine learning techniques to compare both accuracy and probabilistic calibration. We validate our methodology by applying it to ocean model simulations. We find that incorporating sea surface data through a machine learning model improves the performance of spatiotemporal MLD variability estimation compared to optimal interpolation of Argo observations alone. These preliminary results are a promising first step for the application of machine learning to MLD prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA