Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 68(10): 1791-1800, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30816855

RESUMO

OBJECTIVE: Faecal microbiota transplant (FMT) effectively treats recurrent Clostridioides difficile infection (rCDI), but its mechanisms of action remain poorly defined. Certain bile acids affect C. difficile germination or vegetative growth. We hypothesised that loss of gut microbiota-derived bile salt hydrolases (BSHs) predisposes to CDI by perturbing gut bile metabolism, and that BSH restitution is a key mediator of FMT's efficacy in treating the condition. DESIGN: Using stool collected from patients and donors pre-FMT/post-FMT for rCDI, we performed 16S rRNA gene sequencing, ultra performance liquid chromatography mass spectrometry (UPLC-MS) bile acid profiling, BSH activity measurement, and qPCR of bsh/baiCD genes involved in bile metabolism. Human data were validated in C. difficile batch cultures and a C57BL/6 mouse model of rCDI. RESULTS: From metataxonomics, pre-FMT stool demonstrated a reduced proportion of BSH-producing bacterial species compared with donors/post-FMT. Pre-FMT stool was enriched in taurocholic acid (TCA, a potent C. difficile germinant); TCA levels negatively correlated with key bacterial genera containing BSH-producing organisms. Post-FMT samples demonstrated recovered BSH activity and bsh/baiCD gene copy number compared with pretreatment (p<0.05). In batch cultures, supernatant from engineered bsh-expressing E. coli and naturally BSH-producing organisms (Bacteroides ovatus, Collinsella aerofaciens, Bacteroides vulgatus and Blautia obeum) reduced TCA-mediated C. difficile germination relative to culture supernatant of wild-type (BSH-negative) E. coli. C. difficile total viable counts were ~70% reduced in an rCDI mouse model after administration of E. coli expressing highly active BSH relative to mice administered BSH-negative E. coli (p<0.05). CONCLUSION: Restoration of gut BSH functionality contributes to the efficacy of FMT in treating rCDI.


Assuntos
Amidoidrolases/farmacologia , Clostridioides difficile/genética , Infecções por Clostridium/terapia , DNA Bacteriano/genética , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Animais , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Feminino , Ácido Glicocólico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Espectrometria de Massas em Tandem
2.
BMC Microbiol ; 19(1): 33, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736731

RESUMO

BACKGROUND: Lactobacillus mucosae DPC 6426 has previously demonstrated potentially cardio-protective properties, in the form of dyslipidaemia and hypercholesterolemia correction in an apolipoprotein-E deficient mouse model. This study aims to characterise the manner in which this microbe may modulate host bile pool composition and immune response, in the context of cardiovascular disease. Lactobacillus mucosae DPC 6426 was assessed for bile salt hydrolase activity and specificity. The microbe was compared against several other enteric strains of the same species, as well as a confirmed bile salt hydrolase-active strain, Lactobacillus reuteri APC 2587. RESULTS: Quantitative bile salt hydrolase assays revealed that enzymatic extracts from Lactobacillus reuteri APC 2587 and Lactobacillus mucosae DPC 6426 demonstrate the greatest activity in vitro. Bile acid profiling of porcine and murine bile following incubation with Lactobacillus mucosae DPC 6426 confirmed a preference for hydrolysis of glyco-conjugated bile acids. In addition, the purified exopolysaccharide and secretome of Lactobacillus mucosae DPC 6426 were investigated for immunomodulatory capabilities using RAW264.7 macrophages. Gene expression data revealed that both fractions stimulated increases in interleukin-6 and interleukin-10 gene transcription in the murine macrophages, while the entire secretome was necessary to increase CD206 transcription. Moreover, the exopolysaccharide elicited a dose-dependent increase in nitric oxide and interleukin-10 production from RAW264.7 macrophages, concurrent with increased tumour necrosis factor-α secretion at all doses. CONCLUSIONS: This study indicates that Lactobacillus mucosae DPC 6426 modulates both bile pool composition and immune system tone in a manner which may contribute significantly to the previously identified cardio-protective phenotype.


Assuntos
Amidoidrolases/biossíntese , Bile/metabolismo , Imunomodulação , Lactobacillus/enzimologia , Lactobacillus/imunologia , Macrófagos/imunologia , Animais , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/microbiologia , Glicosiltransferases/metabolismo , Hidrólise , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Limosilactobacillus reuteri/enzimologia , Lectinas Tipo C/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Polissacarídeos Bacterianos/farmacologia , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo , Suínos , Fator de Necrose Tumoral alfa/metabolismo
3.
Food Microbiol ; 82: 30-35, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027787

RESUMO

Mushroom growth substrates from different commercial producers of mushrooms (Agaricus bisporus) were screened for the presence of bacteria with potential for use as biocontrol agents for controlling Listeria monocytogenes in the mushroom production environment. Eight anti-listerial strains were isolated from different sources and all were identified using 16s rRNA gene sequencing as Lactococcus lactis subsp. lactis. Whole-genome sequencing of the Lc. lactis isolates indicated that strains from different sites and substrate types were highly similar. Colony MALDI-TOF mass spectrometry found that these strains were Nisin Z producers but inhibitory activity was highly influenced by the incubation conditions and was strain dependant. The biofilm forming ability of these strains was tested using a crystal violet assay and all were found to be strong biofilm formers. Growth of Lc. lactis subsp. lactis using mixed-biofilm conditions with L. monocytogenes on stainless steel resulted in a 4-log reduction of L. monocytogenes cell numbers. Additional sampling of mushroom producers showed that these anti-listerial Lc. lactis strains are commonly present in the mushroom production environment. Lc. lactis has a generally regarded as safe (GRAS) status and therefore has potential for use as an environmentally benign solution to control L. monocytogenes in order to prevent product contamination and to enhance consumer confidence in the mushroom industry.


Assuntos
Agaricales , Antibiose , Bacteriocinas/farmacologia , Agentes de Controle Biológico , Microbiologia de Alimentos , Lactococcus lactis/fisiologia , Listeria monocytogenes/patogenicidade , Biofilmes , Contaminação de Alimentos/prevenção & controle , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aço Inoxidável
4.
Mol Pharm ; 15(12): 5711-5727, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30388019

RESUMO

Pharmacokinetic research at the host-microbe interface has been primarily directed toward effects on drug metabolism, with fewer investigations considering the absorption process. We previously demonstrated that the transcriptional expression of genes encoding intestinal transporters involved in lipid translocation are altered in germ-free and conventionalized mice possessing distinct bile acid signatures. It was consequently hypothesized that microbial bile acid metabolism, which is the deconjugation and dehydroxylation of the bile acid steroid nucleus by gut bacteria, may impact upon drug transporter expression and/or activity and potentially alter drug disposition. Using a panel of three human intestinal cell lines (Caco-2, T84, and HT-29) that differ in basal transporter expression level, bile acid conjugation-, and hydroxylation-status was shown to influence the transcription of genes encoding several major influx and efflux transporter proteins. We further investigated if these effects on transporter mRNA would translate to altered drug disposition and activity. The results demonstrated that the conjugation and hydroxylation status of the bile acid steroid nucleus can influence the cellular response to multidrug resistance (MDR) substrates, a finding that did not directly correlate with directionality of gene or protein expression. In particular, we noted that the cytotoxicity of cyclosporine A was significantly augmented in the presence of the unconjugated bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) in P-gp positive cell lines, as compared to their taurine/glycine-conjugated counterparts, implicating P-gp in the molecular response. Overall this work identifies a novel mechanism by which gut microbial metabolites may influence drug accumulation and suggests a potential role for the microbial bile acid-deconjugating enzyme bile salt hydrolase (BSH) in ameliorating multidrug resistance through the generation of bile acid species with the capacity to access and inhibit P-gp ATPase. The physicochemical property of nonionization is suggested to underpin the preferential ability of unconjugated bile acids to attenuate the efflux of P-gp substrates and to sensitize tumorigenic cells to cytotoxic therapeutics in vitro. This work provides new impetus to investigate whether perturbation of the gut microbiota, and thereby the bile acid component of the intestinal metabolome, could alter drug pharmacokinetics in vivo. These findings may additionally contribute to the development of less toxic P-gp modulators, which could overcome MDR.


Assuntos
Ácido Quenodesoxicólico/metabolismo , Ciclosporina/farmacologia , Ácido Desoxicólico/metabolismo , Microbioma Gastrointestinal/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Variação Biológica da População , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/fisiologia , Glicina , Células HT29 , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , RNA Mensageiro/metabolismo , Taurina/metabolismo , Testes de Toxicidade
5.
Pharmacol Res ; 133: 170-186, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660405

RESUMO

Once regarded obscure and underappreciated, the gut microbiota (the microbial communities colonizing the gastrointestinal tract) is gaining recognition as an influencer of many aspects of human health. Also increasingly apparent is the breadth of interindividual variation in these co-evolved microbial-gut associations, presenting novel quests to explore implications for disease and therapeutic response. In this respect, the unearthing of the drug-metabolizing capacity of the microbiota has provided impetus for the integration of microbiological and pharmacological research. This review considers a potential mechanism, 'microbial bile acid metabolism', by which the intricate interplay between the host and gut bacteria may influence drug pharmacokinetics. Bile salts traditionally regarded as biological surfactants, synthesized by the host and biotransformed by gut bacteria, are now also recognized as signalling molecules that affect diverse physiological processes. Accumulating data indicate that bile salts are not equivalent with respect to their physicochemical properties, micellar solubilization capacities for poorly water-soluble drugs, crystallization inhibition tendencies nor potencies for bile acid receptor activation. Herein, the origin, physicochemical properties, physiological functions, plasticity and pharmaceutical significance of the human bile acid pool are discussed. Microbial dependant differences in the composition of the human bile acid pool, simulated intestinal media and commonly used preclinical species is highlighted to better understand in vivo performance predictiveness. While the precise impact of an altered gut microbiome, and consequently bile acid pool, in the biopharmaceutical setting remains largely elusive, the objective of this article is to aid knowledge acquisition through a detailed review of the literature.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Humanos , Absorção Intestinal
6.
Mol Pharm ; 14(4): 1251-1263, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28186768

RESUMO

In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration-dependent. Our studies herein indicate that bile acid modifications occurring at the host-microbe interface could lead to alterations in the capacity of intestinal bile salt micelles to solubilize drugs, providing impetus to consider the gut microbiota in the drug absorption process. In the clinical setting, disruption of the gut microbial ecosystem, through disease or antibiotic treatment, could transform the bile acid pool with potential implications for drug absorption and bioavailability.


Assuntos
Ácidos e Sais Biliares/química , Bile/química , Microbioma Gastrointestinal/fisiologia , Preparações Farmacêuticas/química , Disponibilidade Biológica , Humanos , Micelas , Solubilidade , Esteroides/química , Ácido Taurocólico/química , Ácido Taurodesoxicólico/química , Água/química
7.
Dig Dis ; 35(3): 169-177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249284

RESUMO

The gastrointestinal microbiota plays a central role in the host metabolism of bile acids through deconjugation and dehydroxylation reactions, which generate unconjugated free bile acids and secondary bile acids respectively. These microbially generated bile acids are particularly potent signalling molecules that interact with host bile acid receptors (including the farnesoid X receptor, vitamin D receptor and TGR5 receptor) to trigger cellular responses that play essential roles in host lipid metabolism, electrolyte transport and immune regulation. Perturbations of microbial populations in the gut can therefore profoundly alter bile acid profiles in the host to impact upon the digestive and signalling properties of bile acids in the human superorganism. A number of recent studies have clearly demonstrated the occurrence of microbial disturbances allied to alterations in host bile acid profiles that occur across a range of disease states. Intestinal diseases including irritable bowel syndrome, inflammatory bowel disease (IBD), short bowel syndrome and Clostridium difficile infection all exhibit concurrent alterations in the composition of the gut microbiota and changes to host bile acid profiles. Similarly, extraintestinal diseases and syndromes such as asthma and obesity may be linked to aberrant bile acid profiles in the host. Here, we focus upon recent studies that highlight the links between alterations to gut microbial communities and altered bile acid profiles across a range of diseases from asthma to IBD.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença , Microbioma Gastrointestinal , Animais , Bactérias/metabolismo , Ácidos e Sais Biliares/química , Humanos , Receptores Citoplasmáticos e Nucleares
8.
Proc Natl Acad Sci U S A ; 111(20): 7421-6, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799697

RESUMO

Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia.


Assuntos
Ácidos e Sais Biliares/química , Trato Gastrointestinal/microbiologia , Metabolismo dos Lipídeos/genética , Aumento de Peso/genética , Adiponectina/metabolismo , Adiposidade , Animais , Ritmo Circadiano , Escherichia coli/genética , Vida Livre de Germes , Hidrólise , Lactobacillus/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Transcrição Gênica
9.
Yale J Biol Med ; 89(3): 375-382, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27698621

RESUMO

The significance of the gut microbiota as a determinant of drug pharmacokinetics and accordingly therapeutic response is of increasing importance with the advent of modern medicines characterised by low solubility and/or permeability, or modified-release. These physicochemical properties and release kinetics prolong drug residence times within the gastrointestinal tract, wherein biotransformation by commensal microbes can occur. As the evidence base in support of this supplementary metabolic "organ" expands, novel opportunities to engineer the microbiota for clinical benefit have emerged. This review provides an overview of microbe-mediated alteration of drug pharmacokinetics, with particular emphasis on studies demonstrating proof of concept in vivo. Additionally, recent advances in modulating the microbiota to improve clinical response to therapeutics are explored.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Microbiota/fisiologia , Farmacocinética
10.
Antimicrob Agents Chemother ; 60(3): 1530-6, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711744

RESUMO

Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼ 3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem.


Assuntos
Bacteriófagos/patogenicidade , Terapia por Fagos/métodos , Infecções por Proteus/terapia , Proteus mirabilis/virologia , Cateterismo Urinário/efeitos adversos , Cateteres Urinários/microbiologia , Bacteriófagos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Cateteres de Demora/microbiologia , Drenagem , Humanos , Microscopia Eletrônica de Transmissão , Modelos Biológicos
11.
J Hepatol ; 61(5): 1115-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24999016

RESUMO

BACKGROUND & AIMS: Despite the mortality associated with liver disease observed in patients with short bowel syndrome (SBS), mechanisms underlying the development of SBS-associated liver disease (SBS-ALD) are poorly understood. This study examines the impact of bacterially-mediated bile acid (BA) dysmetabolism on farnesoid X receptor (FXR) signalling pathways and clinical outcome in a piglet model of SBS-ALD. METHODS: 4-week old piglets underwent 75% small bowel resection (SBR) or sham operation. Liver histology and hepatic inflammatory gene expression were examined. Abundance of BA biotransforming bacteria was determined and metabolomic studies detailed the alterations in BA composition of stool, portal serum and bile samples. Gene expression of intestinal and hepatic FXR target genes and small heterodimer partner (SHP) transrepression targets were assessed. RESULTS: Histological evidence of SBS-ALD included liver bile duct proliferation, hepatocyte ballooning and fibrosis. Inflammatory gene expression was increased. Microbiota changes included a 10-fold decrease in Clostridium and a two-fold decrease in Bacteroides in SBS-ALD piglets. BA composition was altered and reflected a primary BA dominant composition. Intestinal and hepatic regulation of BA synthesis was characterised by a blunted intestinal FXR activation response and a failure of SHP to repress key hepatic targets. CONCLUSIONS: We propose a pathological scenario in which microbial dysbiosis following SBR results in significant BA dysmetabolism and consequent outcomes including steatorrhoea, persistent diarrhoea and liver damage. Furthermore alterations in BA composition may have contributed to the observed disturbance in FXR-mediated signalling pathways. These findings provide an insight into the complex mechanisms mediating the development of liver disease in patients with SBS.


Assuntos
Ácidos e Sais Biliares/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Síndrome do Intestino Curto/complicações , Síndrome do Intestino Curto/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Fígado/patologia , Hepatopatias/microbiologia , Microbiota , Síndrome do Intestino Curto/microbiologia , Transdução de Sinais , Sus scrofa
12.
Curr Opin Gastroenterol ; 30(2): 120-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24468803

RESUMO

PURPOSE OF REVIEW: It is clear that the metabolic activities of the gut microbiota significantly impact upon human health and disease. RECENT FINDINGS: Recent analyses have correlated alterations in microbial community structure with the onset of diabetes, obesity and cardiovascular disease as well as inflammatory conditions of the intestine. This work has demonstrated the influence of diet upon the microbiota in disease states and has identified a number of microbial metabolites that orchestrate the crucial aspects of the host-microbe dialog. The microbial production of short-chain fatty acids, trimethylamine, acetaldehyde and inflammatory mediators has been shown to significantly impact upon the metabolic health of the host through pathways that influence satiety, gut permeability and immune function. In the small intestine, microbial metabolism alters the host bile acid profile affecting the interactions with dedicated bile acid receptors (including FXR and TGR5) to influence both local and systemic cellular responses. Recent findings have, therefore, identified specific microbiota profiles and metabolites as predictors of disease risk as well as determining the microbial species (such as Akkermansia muciniphila and Bilophila wadsworthia) which correlate with health and disease. SUMMARY: This work identifies the microbiota as an important target for new diagnostic and therapeutic approaches in metabolic disease.


Assuntos
Trato Gastrointestinal/microbiologia , Doenças Metabólicas/microbiologia , Microbiota , Animais , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Trato Gastrointestinal/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Doenças Metabólicas/metabolismo
13.
Sci Prog ; 107(1): 368504241231159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490164

RESUMO

The common gastrointestinal commensal Akkermansia muciniphila is a mucin-degrading bacterium that is greatly reduced in individuals consuming a high-fat diet. Increasing evidence from a variety of clinical and pre-clinical studies suggests that oral supplementation with Akkermansia can improve metabolic health and moderate systemic inflammation. We and others have demonstrated a role for Akkermansia administration in protection against infectious disease and the outcome from sepsis. Very recent studies have indicated the molecular mechanisms by which A. muciniphila may interact with the host to influence systemic immune-regulation and control of microbial pathogenesis. Here we consider recent studies which demonstrate the efficacy of this potential next-generation probiotic in animal models of Salmonella Typhimurium, Listeria monocytogenes and Clostridioides difficile as well as influenza virus and phlebovirus. The potential mechanisms by which A. muciniphila may influence local and systemic immune responses are discussed.


Assuntos
Doenças Transmissíveis , Probióticos , Animais , Humanos , Verrucomicrobia/metabolismo , Akkermansia , Probióticos/uso terapêutico
14.
Pharmacol Res Perspect ; 12(4): e1226, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886975

RESUMO

Although classically recognized as a neurotransmitter, gamma aminobutyric acid (GABA) has also been identified in colonic tumors. Moreover, the gut microbiome represents another potential source of GABA. Both GABAA and GABAB receptors have been implicated in contributing to the effects of GABA in colorectal cancer, with both pro- and anti-tumorigenic functions identified. However, their subunit composition is often overlooked. Studies to date have not addressed whether the GABA-producing potential of the microbiome changes over the course of colon tumor development or whether receptor subunit expression patterns are altered in colon cancer. Therefore, we investigated the clusters of orthologous group frequencies of glutamate decarboxylase (GAD) in feces from two murine models of colon cancer and found that the frequency of microbial GAD was significantly decreased early in the tumorigenic process. We also determined that microbial-derived GABA inhibited proliferation of colon cancer cells in vitro and that this effect of GABA on SW480 cells involved both GABAA and GABAB receptors. GABA also inhibited prostaglandin E2 (PGE2)-induced proliferation and interleukin-6 (IL-6) expression in these cells. Gene expression correlations were assessed using the "Cancer Exploration" suite of the TIMER2.0 web tool and identified that GABA receptor subunits were differentially expressed in human colon cancer. Moreover, GABAA receptor subunits were predominantly positively associated with PGE2 synthase, cyclooxygenase-2 and IL-6. Collectively, these data demonstrate decreased potential of the microbiome to produce GABA during tumorigenesis, a novel anti-tumorigenic pathway for GABA, and that GABA receptor subunit expression adds a further layer of complexity to GABAergic signaling in colon cancer.


Assuntos
Proliferação de Células , Neoplasias do Colo , Microbioma Gastrointestinal , Receptores de GABA-A , Receptores de GABA-B , Transdução de Sinais , Ácido gama-Aminobutírico , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Ácido gama-Aminobutírico/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Dinoprostona/metabolismo , Glutamato Descarboxilase/metabolismo , Interleucina-6/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Carcinogênese , Fezes/microbiologia , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Camundongos Endogâmicos C57BL , Feminino
15.
PLoS Pathog ; 7(5): e1002040, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21589907

RESUMO

Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early infection and suggest novel diagnostic and therapeutic approaches.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/imunologia , Neutrófilos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Células Apresentadoras de Antígenos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Células Cultivadas , Difosfatos/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-8/imunologia , Interleucina-8/metabolismo , Ativação Linfocitária/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Ativação de Neutrófilo/imunologia , Neutrófilos/metabolismo , Peritonite/imunologia , Peritonite/microbiologia , Fagocitose/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
16.
BMC Microbiol ; 13: 90, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23617550

RESUMO

BACKGROUND: The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of 'murinisation' to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. RESULTS: The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. CONCLUSION: Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Caderinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Listeriose/patologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Translocação Bacteriana , Barreira Hematoencefálica , Feminino , Listeria monocytogenes/genética , Listeriose/microbiologia , Camundongos , Análise Espaço-Temporal , Virulência , Fatores de Virulência/genética , Imagem Corporal Total
17.
Microb Pathog ; 59-60: 48-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23603274

RESUMO

High pressure treatment is a novel food processing approach for reducing pathogens in foods and food ingredients. However, relatively little is known about the pathogenic potential of organisms that survive the treatment. Twelve previously isolated and characterized variants of Listeria monocytogenes LO28 obtained after a high pressure treatment were assessed for their virulence potential and antibiotic susceptibility. Ten variants showed attenuated virulence while two variants retained full virulence in a mouse model of infection. Seven of the attenuated variants demonstrated a reduction in virulence factor activity. Compared to the wild type, all variants exhibited similar or increased susceptibility to multiple antibiotics commonly used in listeriosis treatment.


Assuntos
Pressão Hidrostática , Listeria monocytogenes/patogenicidade , Listeriose/patologia , Viabilidade Microbiana , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Feminino , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Virulência , Fatores de Virulência/análise
18.
Gut Microbes ; 15(1): 2229948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424323

RESUMO

A high-fat (HF) diet reduces resistance to the foodborne pathogen Listeria monocytogenes. We demonstrate that short-term gavage with A. muciniphila increases resistance to oral and systemic L. monocytogenes infection in mice fed a HF diet. A. muciniphila reduced inflammation in the gut and liver of mice fed a high-fat diet prior to infection and reduced inflammatory cell infiltration in the ileum to levels similar to mice fed a low-fat (LF) diet. Akkermansia administration had minimal impacts upon the microbiota and microbial metabolites and did not affect individual taxa or impact the Bacteroidetes to Firmicutes ratio. In summary, A. muciniphila increased resistance to L. monocytogenes infection in mice fed a HF diet by moderating immune/physiological effects through specific interaction between A. muciniphila and the host gut.


Assuntos
Microbioma Gastrointestinal , Listeria monocytogenes , Listeriose , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Verrucomicrobia/fisiologia , Camundongos Endogâmicos C57BL
19.
Gut Microbes ; 15(1): 2172667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794831

RESUMO

Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.


Assuntos
Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Humanos , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli , Trato Gastrointestinal/patologia , Citrobacter rodentium/fisiologia
20.
Microbiology (Reading) ; 158(Pt 6): 1389-1401, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22466083

RESUMO

Isoprenoid biosynthesis is essential for cell survival. Over 35 000 isoprenoid molecules have been identified to date in the three domains of life (bacteria, archaea and eukaryotes), and these molecules are involved in a wide variety of vital biological functions. Isoprenoids may be synthesized via one of two independent nonhomologous pathways, the classical mevalonate pathway or the alternative 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Given that isoprenoids are indispensable, enzymes involved in their production have been investigated as potential drug targets. It has also been observed that the MEP pathway intermediate 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMB-PP) can activate human Vγ9/Vδ2 T cells. Herein we review isoprenoid biosynthesis in bacterial pathogens. The role of isoprenoid biosynthesis pathways in host-pathogen interactions (virulence potential and immune stimulation) is examined. Finally, the design of antimicrobial drugs that target isoprenoid biosynthesis pathways is discussed.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Terpenos/metabolismo , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA