Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem Front ; 9(16): 4009-4021, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36091973

RESUMO

Lanmodulin (LanM), a naturally lanthanide (Ln)-binding protein with a remarkable selectivity for Lns over Ca(ii) and affinities in the picomolar range, is an attractive target to address challenges in Ln separation. Why LanM has such a high selectivity is currently not entirely understood; both specific amino acid sequences of the EF-Hand loops and cooperativity effects have been suggested. Here, we removed the effect of cooperativity and synthesised all four 12-amino acid EF-Hand loop peptides, and investigated their affinity for two Lns (Eu(iii) and Tb(iii)), the actinide Cm(iii) and Ca(ii). Using isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy (TRLFS) combined with parallel factor analysis, we show that the four short peptides behave very similarly, having affinities in the micromolar range for Eu(iii) and Tb(iii). Ca(ii) was shown not to bind to the peptides, which was verified with circular dichroism spectroscopy. This technique also revealed an increase in structural organisation upon Eu(iii) addition, which was supported by molecular dynamics simulations. Lastly, we put Eu(iii) and Cm(iii) in direct competition using TRLFS. Remarkably, a slightly higher affinity for Cm(iii) was found. Our results demonstrate that the picomolar affinities in LanM are largely an effect of pre-structuring and therefore a reduction of flexibility in combination with cooperative effects, and that all EF-Hand loops possess similar affinities when detached from the protein backbone, albeit still retaining the high selectivity for lanthanides and actinides over calcium.

2.
J Phys Chem B ; 124(25): 5113-5121, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32479079

RESUMO

To map the underlying molecular mechanisms of folding dynamics in proteins, light-operated peptides have emerged as promising tools. In this study, we reveal the complete sequence of light-induced structural changes of AzoChignolin, a short ß-hairpin peptide containing an azobenzene photoswitch in its loop region. Light-triggered structural changes were monitored by time-resolved IR spectroscopy. Formation and destruction of the hairpin structure is very fast and occurs within 100 ns for AzoChignolin in methanol. Atomistic molecular dynamics simulations using two explicit solvents, methanol and water, revealed the underlying molecular processes and allowed us to gain further insight into the reaction mechanism. Despite its rapid reaction time, hairpin formation in these solvents is not force-driven by the molecular switch but proceeded via formation of interstrand hydrogen bonds and contacts between aromatic residues. Moreover, the combined experimental and theoretical study demonstrates that the solvent (methanol vs water) does not dictate the velocity of ß-hairpin formation in the AzoChignolin peptide comprising only a few hydrophobic residues in the strands.


Assuntos
Peptídeos , Dobramento de Proteína , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Proteínas
3.
ACS Cent Sci ; 4(2): 166-179, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29532016

RESUMO

Understanding the activation and internalization of G protein-coupled receptors (GPCRs) using conditional approaches is paramount to developing new therapeutic strategies. Here, we describe the design, synthesis, and testing of ExONatide, a benzylguanine-linked peptide agonist of the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR required for maintenance of glucose levels in humans. ExONatide covalently binds to SNAP-tagged GLP-1R-expressing cells, leading to prolonged cAMP generation, Ca2+ rises, and intracellular retention of the receptor. These effects were readily switched OFF following cleavage of the introduced disulfide bridge using the cell-permeable reducing agent beta-mercaptoethanol (BME). A similar approach could be extended to a class A GPCR using GhrelON, a benzylguanine-linked peptide agonist of the growth hormone secretagogue receptor 1a (GHS-R1a), which is involved in food intake and growth. Thus, ExONatide and GhrelON allow SNAP-tag-directed activation of class A and B GPCRs involved in gut hormone signaling in a reversible manner. This tactic, termed reductively cleavable agONist (RECON), may be useful for understanding GLP-1R and GHS-R1a function both in vitro and in vivo, with applicability across GPCRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA