Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(29): 5290-5304, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37369586

RESUMO

The perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized. Here, we have used mouse organotypic entorhino-hippocampal tissue cultures of either sex, in which the entorhinal cortex (EC) to dentate granule cell (GC; EC-GC) projection is present, and EC-GC pairs can be studied using whole-cell patch-clamp recordings. By using cultures of wild-type mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared, and differences in short-term plasticity were identified. As the perforant path is severely affected in Alzheimer's disease, we used tissue cultures of amyloid precursor protein (APP)-deficient mice to examine the role of APP at this synapse. APP deficiency altered excitatory neurotransmission at medial perforant path synapses, which was accompanied by transcriptomic and ultrastructural changes. Moreover, presynaptic but not postsynaptic APP deletion through the local injection of Cre-expressing adeno-associated viruses in conditional APPflox/flox tissue cultures increased the neurotransmission efficacy at perforant path synapses. In summary, these data suggest a physiological role for presynaptic APP at medial perforant path synapses that may be adversely affected under altered APP processing conditions.SIGNIFICANCE STATEMENT The hippocampus receives input from the entorhinal cortex via the perforant path. These projections to hippocampal dentate granule cells are of utmost importance for learning and memory formation. Although there is detailed knowledge about perforant path projections, the functional synaptic properties at the level of individual connected pairs of neurons are not well understood. In this study, we investigated the role of APP in mediating functional properties and transmission rules in individually connected neurons using paired whole-cell patch-clamp recordings and genetic tools in organotypic tissue cultures. Our results show that presynaptic APP expression limits excitatory neurotransmission via the perforant path, which could be compromised in pathologic conditions such as Alzheimer's disease.


Assuntos
Doença de Alzheimer , Via Perfurante , Camundongos , Animais , Via Perfurante/fisiologia , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/patologia , Giro Denteado/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia
2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397023

RESUMO

Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.


Assuntos
Microglia , Colaterais de Schaffer , Camundongos , Animais , Microglia/patologia , Hipocampo/patologia , Astrócitos/patologia , Metaloproteinases da Matriz
3.
J Bacteriol ; 204(5): e0004622, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35380462

RESUMO

Mycobacteroides abscessus (Mab; also known as Mycobacterium abscessus) is an emerging opportunistic pathogen. Patients with structural lung conditions such as bronchiectasis, cystic fibrosis, and chronic obstructive pulmonary disease are at high risk of developing pulmonary Mab disease. This disease is often chronic as the current treatment regimens are sub-efficacious. Here, we characterize the phenotype of a Mab strain lacking the MAB_3167c locus, which encodes a protein hereafter referred to as Glby. We demonstrate that the loss of Glby impairs normal planktonic growth in liquid broth, results in longer average cell length, and a melding of surfaces between cells. Glby also exhibits a mild ß-lactamase activity. We also present evidence that amino acid substitutions that potentially alter Glby function are not favored. Lastly, we demonstrate that, in a mouse model of pulmonary Mab infection, the mutant lacking Glby was unable to proliferate, gradually cleared, and was undetectable after 3 weeks. These data suggest that an agent that inhibits Glby in vivo may be an efficacious treatment against Mab disease. IMPORTANCE Mycobacteroides abscessus can cause chronic pulmonary infections requiring administration of multiple antibiotics, still resulting in a low cure rate. The incidence of M. abscessus disease is increasing in the United States and the developed regions of the world. We show for the first time that a protein, Glby, affects growth of this bacterium. Using a mouse model of lung M. abscessus disease, we demonstrate that Glby is required for this bacterium to cause disease.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , beta-Lactamases/genética
4.
J Neurosci ; 41(24): 5157-5172, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33926999

RESUMO

The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP-/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-ß and not by APPsα, and it is neither observed in APP+/+ tissue treated with ß- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-ß levels.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Feminino , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Artigo em Inglês | MEDLINE | ID: mdl-33361310

RESUMO

Mycobacteroides abscessus (Mab) is an opportunistic environmental pathogen that can cause chronic pulmonary disease in the setting of structural lung conditions such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. These infections are often incurable and associated with rapid lung function decline. Mab is naturally resistant to most of the antibiotics available today, and current treatment guidelines require at least 1 year of daily multidrug therapy, which is often ineffective and is associated with significant toxicities. ß-Lactams are the most widely used class of antibiotics and have a demonstrated record of safety and tolerability. Here, using a panel of recent clinical isolates of Mab, we evaluated the in vitro activities of dual-ß-lactam combinations to identify new treatments with the potential to treat infections arising from a wide range of Mab strains. The Mab clinical isolates were heterogeneous, as reflected by the diversity of their genomes and differences in their susceptibilities to various drugs. Cefoxitin and imipenem are currently the only two ß-lactams included in the guidelines for treating Mab disease, yet they are not used concurrently in clinical practice. However, this dual-ß-lactam combination exhibited synergy against 100% of the isolates examined (n = 21). Equally surprising is the finding that the combination of two carbapenems, doripenem and imipenem, exhibited synergy against the majority of Mab isolates. In the setting of multidrug-resistant Mab disease with few therapeutic options, these combinations may offer viable immediate treatment options with efficacy against the broad spectrum of Mab strains infecting patients today.


Assuntos
Mycobacterium abscessus , Antibacterianos/farmacologia , Quimioterapia Combinada , Humanos , Hansenostáticos , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia
6.
J Prosthet Dent ; 119(6): 965-974, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29150134

RESUMO

STATEMENT OF PROBLEM: Pertinent evidence regarding the mechanical integrity of mandibular anterior teeth restored with a post-and-core is limited. PURPOSE: The purpose of this finite element analysis study was to compare the impact of the post type (glass fiber post-and-resin core or cast post-and-core) along with the ferrule effect on the stress fields generated in endodontically treated mandibular lateral incisors and canines. MATERIAL AND METHODS: Three-dimensional models of the segmented mandible were developed. Mandibular incisors and canines with or without a 2-mm circular ferrule and restored with a cast post-and-core or glass fiber post-and-resin core were simulated and subjected to linear elastic static analysis. The principal stress values were calculated. von Mises equivalent stresses were used to evaluate the stress. RESULTS: Maximum principal stresses in dentin were highest in incisors, with a ferrule. Stress parameters in composite resin core in both incisors and canines were critically close to the tensile failure limit of the core material. Cast post-and-cores cemented in incisors without a ferrule accumulated the highest stresses, exceeding the tensile failure limit of resin-modified glass ionomer cement. CONCLUSIONS: Tooth preparation with a ferrule led to a remarkable rise in stress in the dentin of mandibular incisors but favored the mechanical integrity of the restoration.


Assuntos
Técnica para Retentor Intrarradicular , Estresse Mecânico , Dente Canino , Dentina , Análise de Elementos Finitos , Humanos , Incisivo , Mandíbula , Modelos Dentários , Modelos Estruturais
7.
Front Cell Neurosci ; 18: 1374555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638302

RESUMO

Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitates the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. Methods: This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. Results: We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. Although morphologies of mouse and rat CA1 neurons showed no significant differences, simulations confirmed that axon morphologies significantly influence individual cell activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10% higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. Conclusion: These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.

8.
J Prosthet Dent ; 110(4): 303-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24079566

RESUMO

STATEMENT OF PROBLEM: Periodontally compromised teeth (PCT) that serve as terminal abutments (TAs) are often challenging depending on the post-and-core treatment, the type of partial fixed dental prosthesis (PFDP), and the periodontal support. PURPOSE: The purpose of this study was to investigate the biomechanical impact of 3 types of PFDP supported by cast post-and-cores on PCT serving as terminal abutments. MATERIAL AND METHODS: A 3-dimensional (3D) model of a human mandible was fabricated by using computed tomography (CT) images and parameterized in a computer-aided design (CAD) environment as follows: Right premolar preparation geometries were designed. The second premolar was assembled with 7-mm or 10-mm cast post-and-core models. Both premolar-models were designed to support single, splinted, or 1-unit cantilever splinted crowns. In each situation, their periodontium geometries were designed to be reduced by 10%, 50%, and 70%. All models were imported into a 3D finite element analysis (FEA) environment and loaded; von Mises stress values and distribution patterns were evaluated. RESULTS: Insertion of the post primarily affected the apical areas of both the root and post; the type of PFDP and periodontal support mainly affected stress distribution. In patients with a normal periodontium, splinting the teeth did not contribute to their stress relief. By extending the post length, a stressful area close to the apex of the post was developed. Splinting mitigated the stress field of the coronal part of the 50% PCT (up to 98.9%); the 30% PCT experienced a substantial decrease (up to 215.9%) in stress in the radical part as well. The increase in the length of the post produced negligible stress-related differences in the apical part of the 50% PCT (0.2% to 2.6%). The use of the 7-mm post effectively relieved the radical part of the splinted 30% PCT. The magnitude of the stress on the radical part of post-restored PCT was considerably increased in the presence of a cantilever. CONCLUSIONS: Splinted crowns supported by a 7-mm cast post-and-core are a favorable biomechanical approach for the restoration of PCT with severe loss of coronal structure. The use of a cantilever greatly aggravates the biomechanical response, especially of post-restored PCT.


Assuntos
Dente Suporte , Planejamento de Dentadura , Prótese Parcial Fixa , Doenças Periodontais/fisiopatologia , Técnica para Retentor Intrarradicular , Processo Alveolar/fisiopatologia , Dente Pré-Molar/fisiopatologia , Fenômenos Biomecânicos , Força de Mordida , Desenho Assistido por Computador , Coroas , Dentina/fisiopatologia , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Mandíbula/anatomia & histologia , Teste de Materiais , Modelos Anatômicos , Modelos Biológicos , Técnica para Retentor Intrarradicular/instrumentação , Estresse Mecânico , Tomografia Computadorizada por Raios X/métodos , Ápice Dentário/fisiopatologia , Raiz Dentária/fisiopatologia
9.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808716

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength and direction, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitating the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. However, axon morphologies of individual cells played a significant role in determining activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10 % higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.

10.
Front Mol Neurosci ; 16: 1148219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122623

RESUMO

Structural, functional, and molecular reorganization of denervated neural networks is often observed in neurological conditions. The loss of input is accompanied by homeostatic synaptic adaptations, which can affect the reorganization process. A major challenge of denervation-induced homeostatic plasticity operating in complex neural networks is the specialization of neuronal inputs. It remains unclear whether neurons respond similarly to the loss of distinct inputs. Here, we used in vitro entorhinal cortex lesion (ECL) and Schaffer collateral lesion (SCL) in mouse organotypic entorhino-hippocampal tissue cultures to study denervation-induced plasticity of CA1 pyramidal neurons. We observed microglia accumulation, presynaptic bouton degeneration, and a reduction in dendritic spine numbers in the denervated layers 3 days after SCL and ECL. Transcriptome analysis of the CA1 region revealed complex changes in differential gene expression following SCL and ECL compared to non-lesioned controls with a specific enrichment of differentially expressed synapse-related genes observed after ECL. Consistent with this finding, denervation-induced homeostatic plasticity of excitatory synapses was observed 3 days after ECL but not after SCL. Chemogenetic silencing of the EC but not CA3 confirmed the pathway-specific induction of homeostatic synaptic plasticity in CA1. Additionally, increased RNA oxidation was observed after SCL and ECL. These results reveal important commonalities and differences between distinct pathway lesions and demonstrate a pathway-specific induction of denervation-induced homeostatic synaptic plasticity.

11.
mSphere ; 7(1): e0003922, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196121

RESUMO

Penicillin binding proteins (PBPs) have been extensively studied due to their importance to the physiology of bacterial cell wall peptidoglycan and as targets of the most widely used class of antibiotics, the ß-lactams. The existing paradigm asserts that PBPs catalyze the final step of peptidoglycan biosynthesis, and ß-lactams inhibit their activities. According to this paradigm, a distinct enzyme class, ß-lactamases, exists to inactivate ß-lactams. This paradigm has been the basis for how bacterial diseases are treated with ß-lactams. We tested whether this historical view accurately reflects the relationship between ß-lactams and the PBPs and the ß-lactamase, BlaC, of Mycobacterium tuberculosis. BlaC was the major inactivator of the cephalosporin subclass of ß-lactams. However, the PBPs PonA1 and PonA2 inactivated penicillins and carbapenems more effectively than BlaC. These findings demonstrate that select M. tuberculosis PBPs are effective at inactivating several ß-lactams. Lesser-known PBPs, DacB, DacB1, DacB2, and Rv2864c, a putative PBP, were comparably more resistant to inhibition by all ß-lactam subclasses. Additionally, Rv1730c exhibited low affinity to most ß-lactams. Based on these findings, we conclude that in M. tuberculosis, BlaC is not the only source of inactivation of ß-lactams. Therefore, the historical paradigm does not accurately describe the relationship between ß-lactams and M. tuberculosis. IMPORTANCE M. tuberculosis, the causative agent of tuberculosis, kills more humans than any other bacterium. ß-lactams are the most widely used class of antibiotics to treat bacterial infections. Unlike in the historical model that describes the relationship between ß-lactams and M. tuberculosis, we find that M. tuberculosis penicillin binding proteins are able to inactivate select ß-lactams with high efficiency.


Assuntos
Mycobacterium tuberculosis , Proteínas de Ligação às Penicilinas , beta-Lactamases , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano , beta-Lactamases/genética , beta-Lactamas/farmacologia
12.
Brain Stimul ; 14(6): 1470-1482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34562659

RESUMO

BACKGROUND: Transcranial Magnetic Stimulation (TMS) is a widely used non-invasive brain stimulation method. However, its mechanism of action and the neural response to TMS are still poorly understood. Multi-scale modeling can complement experimental research to study the subcellular neural effects of TMS. At the macroscopic level, sophisticated numerical models exist to estimate the induced electric fields. However, multi-scale computational modeling approaches to predict TMS cellular and subcellular responses, crucial to understanding TMS plasticity inducing protocols, are not available so far. OBJECTIVE: We develop an open-source multi-scale toolbox Neuron Modeling for TMS (NeMo-TMS) to address this problem. METHODS: NeMo-TMS generates accurate neuron models from morphological reconstructions, couples them to the external electric fields induced by TMS, and simulates the cellular and subcellular responses of single-pulse and repetitive TMS. RESULTS: We provide examples showing some of the capabilities of the toolbox. CONCLUSION: NeMo-TMS toolbox allows researchers a previously not available level of detail and precision in realistically modeling the physical and physiological effects of TMS.


Assuntos
Neurônios , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Simulação por Computador , Cabeça , Neurônios/fisiologia , Estimulação Magnética Transcraniana/métodos
13.
J Prosthet Dent ; 103(2): 91-100, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20141813

RESUMO

STATEMENT OF PROBLEM: Inadequate dimensioning of the connectors in a cantilever cross-arch fixed dental prosthesis (FDP) in perioprosthetic patients jeopardizes the prognosis of the restoration. PURPOSE: The purpose of this study was to investigate the effect of increasing the vertical dimension (VD) on the maximum stress developed within the connectors during the static loading of a cross-arch FDP extended as a 1- and 2-unit cantilever. MATERIAL AND METHODS: Six digital models were developed, derived from a 3-dimensional (3-D) initial model. In the initial model, the teeth were prepared for metal ceramic restorations and splinted with a cross-arch FDP, extended as a 1- or 2-unit cantilever. The VDs of the connectors proximal to the retaining abutment were 3, 4, or 5 mm. A 3-D finite element analysis (FEA) was performed. RESULTS: The VD increase, from 3 to 4 mm and from 3 to 5 mm, of the connector distal to the retaining abutment, for each FDP, presented a maximum stress value decrease of approximately 25% and 48%, respectively. The similar VD increase of the connector mesial to the retaining abutment, for each FDP, resulted in relatively smaller stress changes. For the 2-unit cantilever restoration, the stress decreases were approximately 9% and 15%, respectively, whereas in the 1-unit cantilever restoration, the decrease was about 10% for the 4-mm connector. Further increase of the VD to 5 mm did not relieve the peak stress. The highest stress value was measured on the 3-mm connector distal to the retaining abutment in the 2-unit cantilever restoration. Despite the VD increase, the connectors proximal to the retaining abutment still developed the highest stress values of all the connectors for every model. CONCLUSIONS: The connector with the highest risk of failure is the 3-mm connector distal to the retaining abutment of the 2-unit cantilever restoration. Increasing the vertical dimension is beneficial for the connector distal to the retaining abutment, while the resultant stress changes are not substantial for the connectors mesial to the retaining abutment. (J Prosthet Dent 2010;103:91-100).


Assuntos
Perda do Osso Alveolar/fisiopatologia , Planejamento de Dentadura , Retenção de Dentadura/instrumentação , Prótese Parcial Fixa , Análise de Elementos Finitos , Imageamento Tridimensional/métodos , Fenômenos Biomecânicos , Simulação por Computador , Dente Suporte , Módulo de Elasticidade , Ligas de Ouro/química , Humanos , Ligas Metalo-Cerâmicas/química , Modelos Biológicos , Ligamento Periodontal/fisiopatologia , Estresse Mecânico , Propriedades de Superfície , Preparo Prostodôntico do Dente/métodos
14.
Front Cell Neurosci ; 14: 50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256317

RESUMO

During the past 50 years, the cellular and molecular mechanisms of synaptic plasticity have been studied in great detail. A plethora of signaling pathways have been identified that account for synaptic changes based on positive and negative feedback mechanisms. Yet, the biological significance of Hebbian synaptic plasticity (= positive feedback) and homeostatic synaptic plasticity (= negative feedback) remains a matter of debate. Specifically, it is unclear how these opposing forms of plasticity, which share common downstream mechanisms, operate in the same networks, neurons, and synapses. Based on the observation that rapid and input-specific homeostatic mechanisms exist, we here discuss a model that is based on signaling pathways that may adjust a balance between Hebbian and homeostatic synaptic plasticity. Hence, "alterations" in Hebbian plasticity may, in fact, resemble "enhanced" homeostasis, which rapidly returns synaptic strength to baseline. In turn, long-lasting experience-dependent synaptic changes may require attenuation of homeostatic mechanisms or the adjustment of homeostatic setpoints at the single-synapse level. In this context, we propose a role for the proteolytic processing of the amyloid precursor protein (APP) in setting a balance between the ability of neurons to express Hebbian and homeostatic synaptic plasticity.

15.
J Prosthet Dent ; 101(1): 54-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19105992

RESUMO

STATEMENT OF PROBLEM: Increased technical failure has been reported for cross-arch fixed partial dentures (FPDs), particularly for cantilever units with minimum osseous support. PURPOSE: The purpose of this study was to investigate the effect of severely reduced bone support on the stress field developed within the connectors for 3 types of cross-arch FPDs. MATERIAL AND METHODS: Six digital parametric models were developed, derived from a 3-dimensional (3-D) initial model. The latter simulated a human mandible, dentate bilaterally to second premolars, with normal height of alveolar bone. In the initial model, the teeth were prepared and splinted with a cross-arch FPD bilaterally with one of the following: no cantilever, 1-unit cantilever, or 2-unit cantilever. All structures were obtained from computed tomography (CT)-scan images or constructed in 3-D computer-aided design (CAD) and reverse engineering environments. A 3-D finite element analysis (3-D FEA) was performed. RESULTS: The reduction of the alveolar bone in the no-cantilever FPD model caused a greater increase of stress in the region of connectors among the splinted teeth in comparison to the 1- and 2-unit cantilever FPD model. The stress state within the connectors of the cantilever segment remained constant. The connectors proximal to the retaining abutment demonstrated the highest stress values, independent of the osseous support. The stress values in the region of the same connectors in the 2-unit cantilever restoration were almost double, compared to the 1-unit cantilever model. Decreasing the osseous level in the 1- and 2-unit cantilever FPD models caused milder stress distribution and magnitude in the region of connectors among the splinted teeth. CONCLUSIONS: The stress field developed within the connectors of the cantilever segment is independent of the osseous level. The stress field within the connectors among splinted teeth depends on the osseous support and both the presence and length of the cantilever segment. Furthermore, this study indicates that adding a cantilever segment has a positive effect on the stress behavior of the splinted teeth connectors in situations of reduced osseous support.


Assuntos
Perda do Osso Alveolar/fisiopatologia , Análise do Estresse Dentário , Planejamento de Dentadura , Prótese Parcial Fixa , Fenômenos Biomecânicos , Desenho Assistido por Computador , Dente Suporte , Análise do Estresse Dentário/métodos , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Mandíbula/diagnóstico por imagem , Modelos Biológicos , Radiografia
16.
Exp Neurol ; 312: 1-9, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401642

RESUMO

Neurons adjust their synaptic strength in a homeostatic manner following changes in network activity and connectivity. While this form of plasticity has been studied in detail for excitatory synapses, homeostatic plasticity of inhibitory synapses remains not well-understood. In the present study, we employed entorhinal cortex lesion (ECL) of organotypic entorhino-hippocampal tissue cultures to test for homeostatic changes in GABAergic neurotransmission onto partially denervated dentate granule cells. Using single and paired whole-cell patch-clamp recordings, as well as immunostainings for synaptic markers, we find that excitatory synaptic strength is robustly increased 3 days post lesion (dpl), whereas GABAergic neurotransmission is not changed after denervation. Even under conditions of pharmacological inhibition of glutamatergic neurotransmission, which prevents neurons to compensate for the loss of input via excitatory synaptic scaling, down-scaling of GABAergic synapses does not emerge 3 days after denervation. We conclude that granule cells maintain structural and functional properties of GABAergic synapses even in the face of substantial changes in network connectivity. Hence, alterations in inhibitory neurotransmission, as seen in pathological brain states, may not simply reflect a homeostatic response to disconnection.


Assuntos
Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Denervação , Giro Denteado/citologia , Córtex Entorrinal/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Técnicas de Cultura de Órgãos
17.
Front Mol Neurosci ; 11: 303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214394

RESUMO

Homeostatic plasticity mechanisms maintain neurons in a stable state. To what extent these mechanisms are relevant during the structural and functional maturation of neural tissue is poorly understood. To reveal developmental changes of a major homeostatic plasticity mechanism, i.e., homeostatic excitatory synaptic plasticity, we analyzed 1-week- and 4-week-old entorhino-hippocampal slice cultures and investigated the ability of immature and mature dentate granule cells (GCs) to express this form of plasticity. Our experiments demonstrate that immature GCs are capable of adjusting their excitatory synaptic strength in a compensatory manner at early postnatal stages, i.e., in 1-week-old preparations, as is the case for mature GCs. This ability of immature dentate GCs is absent in 4-week-old slice cultures. Further investigations into the signaling pathways reveal an important role of dopamine (DA), which prevents homeostatic synaptic up-scaling of immature GCs in young cultures, whereas it does not affect immature and mature GCs in 4-week-old preparations. Together, these results disclose the ability of immature GCs to express homeostatic synaptic plasticity during early postnatal development. They hint toward a novel role of dopaminergic signaling, which may gate activity-dependent changes of newly born neurons by blocking homeostasis.

18.
Comput Methods Programs Biomed ; 86(1): 30-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17267066

RESUMO

The paper presents computer-aided methods that allocate a dental implant and suggest its size, during the pre-operative planning stage, in conformance with introduced optimization criteria and established clinical requirements. Based on computed tomography data of the jaw and prosthesis anatomy, single tooth cases are planned for the best-suited implant insertion at a user-defined region. An optimum implantation axis line is produced and cylindrical implants of various candidate sizes are then automatically positioned, while their occlusal end is leveled to bone ridge, and evaluated. Radial safety margins are used for the assessment of the implant safety distance from neighboring anatomical structures and bone quantity and quality are estimated and taken into consideration. A case study demonstrates the concept and allows for its discussion.


Assuntos
Tomada de Decisões Assistida por Computador , Implantes Dentários , Dentística Operatória/organização & administração , Cuidados Pré-Operatórios , Grécia , Humanos , Tomografia Computadorizada por Raios X
19.
Future Microbiol ; 12: 473-480, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28326811

RESUMO

AIM: The objective of this study was to assess if avibactam, a new ß-lactamase inhibitor, can restore the potency of carbapenems, a sub-class of ß-lactams, against Mycobacterium abscessus clinical isolates. MATERIALS & METHODS: 28 M. abscessus clinical isolates that are resistant to multiple drugs currently used to treat its infection were included. MIC of carbapenems alone and in combination with avibactam against these strains were determined. RESULTS: Tebipenem, an oral carbapenem, and ertapenem and panipenem exhibited the greatest shift in MIC when supplemented with avibactam. CONCLUSION: Avibactam restores MICs of tebipenem, ertapenem and panipenem against M. abscessus to therapeutically achievable concentrations and raises the possibility of usefulness of these carbapenems to treat drug-resistant M. abscessus infections.


Assuntos
Compostos Azabicíclicos/farmacologia , Carbapenêmicos/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Farmacorresistência Bacteriana Múltipla , Ertapenem , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia , Tienamicinas/farmacologia , beta-Lactamas/farmacologia
20.
Front Neuroanat ; 10: 64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27378862

RESUMO

Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 µM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA