Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(17): e98, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35736235

RESUMO

Alternative splicing (AS) is necessary for viral proliferation in host cells and a critical regulatory component of viral gene expression. Conventional RNA-seq approaches provide incomplete coverage of AS due to their short read lengths and are susceptible to biases and artifacts introduced in prevailing library preparation methodologies. Moreover, viral splicing studies are often conducted separately from host cell transcriptome analysis, precluding an assessment of the viral manipulation of host splicing machinery. To address current limitations, we developed a quantitative full-length direct cDNA sequencing strategy to simultaneously profile viral and host cell transcripts. This nanopore-based approach couples processive reverse transcriptases with a novel one-step chemical ablation of 3' RNA ends (termed CASPR), which decreases ribosomal RNA reads and enriches polyadenylated coding sequences. We extensively validate our approach using synthetic reference transcripts and show that CASPR doubles the breadth of coverage per transcript and increases detection of long transcripts (>4 kb), while being functionally equivalent to PolyA+ selection for transcript quantification. We used our approach to interrogate host cell and HIV-1 transcript dynamics during viral reactivation and identified novel putative HIV-1 host factors containing exon skipping or novel intron retentions and delineated the HIV-1 transcriptional state associated with these differentially regulated host factors.


Assuntos
Processamento Alternativo , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA/genética , Perfilação da Expressão Gênica/métodos , Infecções por HIV/virologia , Poli A , RNA Ribossômico , Análise de Sequência de RNA/métodos , Transcriptoma
2.
Nucleic Acids Res ; 50(7): e41, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35018461

RESUMO

Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.


Assuntos
Variação Genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Genética , Vírus de DNA/genética , Genoma Viral/genética , Genômica , Humanos
3.
Nucleic Acids Res ; 49(12): e70, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33849057

RESUMO

Technical challenges remain in the sequencing of RNA viruses due to their high intra-host diversity. This bottleneck is particularly pronounced when interrogating long-range co-evolved genetic interactions given the read-length limitations of next-generation sequencing platforms. This has hampered the direct observation of these genetic interactions that code for protein-protein interfaces with relevance in both drug and vaccine development. Here we overcome these technical limitations by developing a nanopore-based long-range viral sequencing pipeline that yields accurate single molecule sequences of circulating virions from clinical samples. We demonstrate its utility in observing the evolution of individual HIV Gag-Pol genomes in response to antiviral pressure. Our pipeline, called Multi-read Hairpin Mediated Error-correction Reaction (MrHAMER), yields >1000s of viral genomes per sample at 99.9% accuracy, maintains the original proportion of sequenced virions present in a complex mixture, and allows the detection of rare viral genomes with their associated mutations present at <1% frequency. This method facilitates scalable investigation of genetic correlates of resistance to both antiviral therapy and immune pressure and enables the identification of novel host-viral and viral-viral interfaces that can be modulated for therapeutic benefit.


Assuntos
HIV/genética , Sequenciamento por Nanoporos/métodos , DNA Complementar , Farmacorresistência Viral/genética , Evolução Molecular , Proteínas de Fusão gag-pol/genética , Genoma Viral , HIV/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
4.
iScience ; 25(12): 105490, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505924

RESUMO

It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.

5.
Front Mol Neurosci ; 13: 534238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041772

RESUMO

A number of studies implicate biogenic amines in regulating circadian rhythms. In particular, dopamine and serotonin influence the entrainment of circadian rhythms to daily food availability. To study circadian entrainment to feeding, food availability is typically restricted to a short period within the light cycle daily. This results in a notable increase in pre-meal activity, termed "food anticipatory activity" (FAA), which typically develops within about 1 week of scheduled feeding. Several studies have implicated serotonin as a negative regulator of FAA: (1) aged rats treated with serotonin 5-HT2 and 3 receptor antagonists showed enhanced FAA, (2) mice lacking for the 2C serotonin receptor demonstrate enhanced FAA, and (3) pharmacologically increased serotonin levels suppressed FAA while decreased serotonin levels enhanced FAA in mice. We sought to confirm and extend these findings using genetic models with impairments in central serotonin production or re-uptake, but were surprised to find that both serotonin transporter (Slc6a4) and tryptophan hydroxylase-2 knockout mice demonstrated a normal behavioral response to timed, calorie restricted feeding. Our data suggest that FAA is largely independent of central serotonin and/or serotonin reuptake and that serotonin may not be a robust negative regulator of FAA.

6.
J Mol Biol ; 432(10): 3338-3352, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259542

RESUMO

Reverse transcriptase (RT) enzymes are indispensable tools for interrogating diverse aspects of RNA metabolism and transcriptome composition. Due to the growing interest in sequence and structural complexity of long RNA molecules, processive RT enzymes are now required for preserving linkage and information content in mixed populations of transcripts, and the low-processivity RT enzymes that are commercially available cannot meet this need. MarathonRT is encoded within a eubacterial group II intron, and it has been shown to efficiently copy highly structured long RNA molecules in a single pass. In this work, we systematically characterize MarathonRT as a tool enzyme and optimize its performance in a variety of applications that include single-cycle reverse transcription of long RNAs, dimethyl sulfate mutational profiling (DMS-MaP), selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), using ultra-long amplicons and the detection of natural RNA base modifications. By diversifying MarathonRT reaction protocols, we provide an upgraded suite of tools for cutting-edge RNA research and clinical application.


Assuntos
Bactérias/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , RNA/química , RNA/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , RNA/genética , Análise de Sequência de RNA
7.
PLoS One ; 9(5): e95990, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806659

RESUMO

In rodents, daily feeding schedules induce food anticipatory activity (FAA) rhythms with formal properties suggesting mediation by food-entrained circadian oscillators (FEOs). The search for the neuronal substrate of FEOs responsible for FAA is an active area of research, but studies spanning several decades have yet to identify unequivocally a brain region required for FAA. Variability of results across studies leads to questions about underlying biology versus methodology. Here we describe in C57BL/6 male mice the effects of varying the 'dose' of caloric restriction (0%, 60%, 80%, 110%) on the expression of FAA as measured by a video-based analysis system, and on the induction of c-Fos in brain regions that have been implicated in FAA. We determined that more severe caloric restriction (60%) leads to a faster onset of FAA with increased magnitude. Using the 60% caloric restriction, we found little evidence for unique signatures of neuronal activation in the brains of mice anticipating a daily mealtime compared to mice that were fasted acutely or fed ad-libitum-even in regions such as the dorsomedial and ventrolateral hypothalamus, nucleus accumbens, and cerebellum that have previously been implicated in FAA. These results underscore the importance of feeding schedule parameters in determining quantitative features of FAA in mice, and demonstrate dissociations between behavioral FAA and neural activity in brain areas thought to harbor FEOs or participate in their entrainment or output.


Assuntos
Encéfalo/fisiologia , Comportamento Alimentar/fisiologia , Fome/fisiologia , Animais , Restrição Calórica , Cerebelo/fisiologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/fisiologia
8.
Elife ; 3: e03781, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25217530

RESUMO

Daily rhythms of food anticipatory activity (FAA) are regulated independently of the suprachiasmatic nucleus, which mediates entrainment of rhythms to light, but the neural circuits that establish FAA remain elusive. In this study, we show that mice lacking the dopamine D1 receptor (D1R KO mice) manifest greatly reduced FAA, whereas mice lacking the dopamine D2 receptor have normal FAA. To determine where dopamine exerts its effect, we limited expression of dopamine signaling to the dorsal striatum of dopamine-deficient mice; these mice developed FAA. Within the dorsal striatum, the daily rhythm of clock gene period2 expression was markedly suppressed in D1R KO mice. Pharmacological activation of D1R at the same time daily was sufficient to establish anticipatory activity in wild-type mice. These results demonstrate that dopamine signaling to D1R-expressing neurons in the dorsal striatum plays an important role in manifestation of FAA, possibly by synchronizing circadian oscillators that modulate motivational processes and behavioral output.


Assuntos
Antecipação Psicológica , Ritmo Circadiano , Comportamento Alimentar , Neostriado/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Comportamento Animal , Temperatura Corporal , Restrição Calórica , Sinais (Psicologia) , Dieta , Dopamina/metabolismo , Jejum , Manobra Psicológica , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Condicionamento Físico Animal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
PLoS One ; 7(7): e41161, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815954

RESUMO

When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA), is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903). In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal.


Assuntos
Gorduras na Dieta , Hipotálamo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ração Animal , Animais , Comportamento , Comportamento Animal , Temperatura Corporal , Peso Corporal , Restrição Calórica , Ritmo Circadiano , Ingestão de Alimentos , Comportamento Alimentar , Feminino , Regulação da Expressão Gênica , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/metabolismo , Temperatura
10.
PLoS One ; 7(5): e37992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662260

RESUMO

When rodents are fed in a limited amount during the daytime, they rapidly redistribute some of their nocturnal activity to the time preceding the delivery of food. In rats, anticipation of a daily meal has been interpreted as a circadian rhythm controlled by a food-entrained oscillator (FEO) with circadian limits to entrainment. Lesion experiments place this FEO outside of the light-entrainable circadian pacemaker in the suprachiasmatic nucleus. Mice also anticipate a fixed daily meal, but circadian limits to entrainment and anticipation of more than 2 daily meals, have not been assessed. We used a video-based behavior recognition system to quantify food anticipatory activity in mice receiving 2, 3, or 6 daily meals at intervals of 12, 8, or 4-hours (h). Individual mice were able to anticipate as many as 4 of 6 daily meals, and anticipation persisted during meal omission tests. On the 6 meal schedule, pre-prandial activity and body temperature were poorly correlated, suggesting independent regulation. Mice showed a limited ability to anticipate an 18 h feeding schedule. Finally, mice showed concurrent circadian and sub-hourly anticipation when provided with 6 small meals, at 30 minute intervals, at a fixed time of day. These results indicate that mice can anticipate feeding opportunities at a fixed time of day across a wide range of intervals not previously associated with anticipatory behavior in studies of rats. The methods described here can be exploited to determine the extent to which timing of different intervals in mice relies on common or distinct neural and molecular mechanisms.


Assuntos
Ritmo Circadiano/fisiologia , Comportamento Alimentar , Animais , Privação de Alimentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/fisiologia
11.
PLoS One ; 6(3): e18377, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21464907

RESUMO

Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA.


Assuntos
Comportamento Alimentar/fisiologia , Deleção de Genes , Grelina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leptina/genética , Neuropeptídeo Y/genética , Neuropeptídeos/genética , Animais , Comportamento Animal/fisiologia , Temperatura Corporal/genética , Restrição Calórica , Grelina/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Leptina/deficiência , Camundongos , Camundongos Knockout , Neuropeptídeo Y/deficiência , Neuropeptídeos/deficiência , Orexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA