Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(2): 1031-1046, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34650206

RESUMO

The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Proteínas da Membrana Plasmática de Transporte de Dopamina , Transtorno do Deficit de Atenção com Hiperatividade/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Haplótipos , Humanos , Mutação , Fenótipo
2.
Mol Psychiatry ; 26(8): 4417-4430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31796894

RESUMO

Reward modulates the saliency of a specific drug exposure and is essential for the transition to addiction. Numerous human PET-fMRI studies establish a link between midbrain dopamine (DA) release, DA transporter (DAT) availability, and reward responses. However, how and whether DAT function and regulation directly participate in reward processes remains elusive. Here, we developed a novel experimental paradigm in Drosophila melanogaster to study the mechanisms underlying the psychomotor and rewarding properties of amphetamine (AMPH). AMPH principally mediates its pharmacological and behavioral effects by increasing DA availability through the reversal of DAT function (DA efflux). We have previously shown that the phospholipid, phosphatidylinositol (4, 5)-bisphosphate (PIP2), directly interacts with the DAT N-terminus to support DA efflux in response to AMPH. In this study, we demonstrate that the interaction of PIP2 with the DAT N-terminus is critical for AMPH-induced DAT phosphorylation, a process required for DA efflux. We showed that PIP2 also interacts with intracellular loop 4 at R443. Further, we identified that R443 electrostatically regulates DA efflux as part of a coordinated interaction with the phosphorylated N-terminus. In Drosophila, we determined that a neutralizing substitution at R443 inhibited the psychomotor actions of AMPH. We associated this inhibition with a decrease in AMPH-induced DA efflux in isolated fly brains. Notably, we showed that the electrostatic interactions of R443 specifically regulate the rewarding properties of AMPH without affecting AMPH aversion. We present the first evidence linking PIP2, DAT, DA efflux, and phosphorylation processes with AMPH reward.


Assuntos
Anfetamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Anfetamina/farmacologia , Animais , Sítios de Ligação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster , Fosfatidilinositóis
3.
Proc Natl Acad Sci U S A ; 116(9): 3853-3862, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755521

RESUMO

The human dopamine (DA) transporter (hDAT) mediates clearance of DA. Genetic variants in hDAT have been associated with DA dysfunction, a complication associated with several brain disorders, including autism spectrum disorder (ASD). Here, we investigated the structural and behavioral bases of an ASD-associated in-frame deletion in hDAT at N336 (∆N336). We uncovered that the deletion promoted a previously unobserved conformation of the intracellular gate of the transporter, likely representing the rate-limiting step of the transport process. It is defined by a "half-open and inward-facing" state (HOIF) of the intracellular gate that is stabilized by a network of interactions conserved phylogenetically, as we demonstrated in hDAT by Rosetta molecular modeling and fine-grained simulations, as well as in its bacterial homolog leucine transporter by electron paramagnetic resonance analysis and X-ray crystallography. The stabilization of the HOIF state is associated both with DA dysfunctions demonstrated in isolated brains of Drosophila melanogaster expressing hDAT ∆N336 and with abnormal behaviors observed at high-time resolution. These flies display increased fear, impaired social interactions, and locomotion traits we associate with DA dysfunction and the HOIF state. Together, our results describe how a genetic variation causes DA dysfunction and abnormal behaviors by stabilizing a HOIF state of the transporter.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Dopamina/genética , Locomoção/genética , Animais , Animais Geneticamente Modificados , Transtorno do Espectro Autista/fisiopatologia , Cristalografia por Raios X , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Espectroscopia de Ressonância de Spin Eletrônica , Medo/fisiologia , Humanos , Relações Interpessoais , Locomoção/fisiologia , Modelos Moleculares , Mutação , Deleção de Sequência/genética
4.
PLoS Biol ; 16(7): e2006682, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30048457

RESUMO

The gut-to-brain axis exhibits significant control over motivated behavior. However, mechanisms supporting this communication are poorly understood. We reveal that a gut-based bariatric surgery chronically elevates systemic bile acids and attenuates cocaine-induced elevations in accumbal dopamine. Notably, this surgery reduces reward-related behavior and psychomotor sensitization to cocaine. Utilizing a knockout mouse model, we have determined that a main mediator of these post-operative effects is the Takeda G protein-coupled bile acid receptor (TGR5). Viral restoration of TGR5 in the nucleus accumbens of TGR5 knockout animals is sufficient to restore cocaine reward, centrally localizing this TGR5-mediated modulation. These findings define TGR5 and bile acid signaling as pharmacological targets for the treatment of cocaine abuse and reveal a novel mechanism of gut-to-brain communication.


Assuntos
Cirurgia Bariátrica , Bile/metabolismo , Cocaína/farmacologia , Recompensa , Transdução de Sinais , Animais , Comportamento Animal , Comportamento de Escolha/efeitos dos fármacos , Dopamina/metabolismo , Vesícula Biliar/metabolismo , Íleo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/metabolismo
5.
J Allergy Clin Immunol ; 142(5): 1515-1528.e8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29331643

RESUMO

BACKGROUND: IL-33 is one of the most consistently associated gene candidates for asthma identified by using a genome-wide association study. Studies in mice and in human cells have confirmed the importance of IL-33 in inducing type 2 cytokine production from both group 2 innate lymphoid cells (ILC2s) and TH2 cells. However, there are no pharmacologic agents known to inhibit IL-33 release from airway cells. OBJECTIVE: We sought to determine the effect of glucagon-like peptide 1 receptor (GLP-1R) signaling on aeroallergen-induced airway IL-33 production and release and on innate type 2 airway inflammation. METHODS: BALB/c mice were challenged intranasally with Alternaria extract for 4 consecutive days. GLP-1R agonist or vehicle was administered starting either 2 days before the first Alternaria extract challenge or 1 day after the first Alternaria extract challenge. RESULTS: GLP-1R agonist treatment starting 2 days before the first Alternaria extract challenge decreased IL-33 release in the bronchoalveolar lavage fluid and dual oxidase 1 (Duox1) mRNA expression 1 hour after the first Alternaria extract challenge and IL-33 expression in lung epithelial cells 24 hours after the last Alternaria extract challenge. Furthermore, GLP-1R agonist significantly decreased the number of ILC2s expressing IL-5 and IL-13, lung protein expression of type 2 cytokines and chemokines, the number of perivascular eosinophils, mucus production, and airway responsiveness compared with vehicle treatment. GLP-1R agonist treatment starting 1 day after the first Alternaria extract challenge also significantly decreased eosinophilia and type 2 cytokine and chemokine expression in the airway after 4 days of Alternaria extract challenge. CONCLUSION: These results reveal that GLP-1R signaling might be a therapy to reduce IL-33 release and inhibit the ILC2 response to protease-containing aeroallergens, such as Alternaria.


Assuntos
Asma/imunologia , Peptídeo 1 Semelhante ao Glucagon/imunologia , Receptor do Peptídeo Semelhante ao Glucagon 1/imunologia , Interleucina-33/imunologia , Alérgenos/imunologia , Alternaria/imunologia , Animais , Citocinas/imunologia , Dermatophagoides pteronyssinus/imunologia , Eosinofilia/imunologia , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Imunidade Inata , Pulmão/citologia , Pulmão/imunologia , Linfócitos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Muco/imunologia , Transdução de Sinais
6.
Nat Chem Biol ; 11(4): 271-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25706338

RESUMO

Hypersecretion of norepinephrine (NE) and angiotensin II (AngII) is a hallmark of major prevalent cardiovascular diseases that contribute to cardiac pathophysiology and morbidity. Herein, we explore whether heterodimerization of presynaptic AngII AT1 receptor (AT1-R) and NE α2C-adrenergic receptor (α2C-AR) could underlie their functional cross-talk to control NE secretion. Multiple bioluminescence resonance energy transfer and protein complementation assays allowed us to accurately probe the structures and functions of the α2C-AR-AT1-R dimer promoted by ligand binding to individual protomers. We found that dual agonist occupancy resulted in a conformation of the heterodimer different from that induced by active individual protomers and triggered atypical Gs-cAMP-PKA signaling. This specific pharmacological signaling unit was identified in vivo to promote not only NE hypersecretion in sympathetic neurons but also sympathetic hyperactivity in mice. Thus, we uncovered a new process by which GPCR heterodimerization creates an original functional pharmacological entity and that could constitute a promising new target in cardiovascular therapeutics.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor Tipo 1 de Angiotensina/agonistas , Transdução de Sinais , Agonistas alfa-Adrenérgicos/química , Animais , Biofísica , Doenças Cardiovasculares/metabolismo , AMP Cíclico/metabolismo , Dimerização , Desenho de Fármacos , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Norepinefrina/química , Células PC12 , Fosforilação , Conformação Proteica , Ratos , Receptores Adrenérgicos alfa 2/química , Sistema Nervoso Simpático/efeitos dos fármacos
7.
J Neurosci ; 35(23): 8843-54, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063917

RESUMO

Disrupted neuronal protein kinase B (Akt) signaling has been associated with dopamine (DA)-related neuropsychiatric disorders, including schizophrenia, a devastating mental illness. We hypothesize that proper DA neurotransmission is therefore dependent upon intact neuronal Akt function. Akt is activated by phosphorylation of two key residues: Thr308 and Ser473. Blunted Akt phosphorylation at Ser473 (pAkt-473) has been observed in lymphocytes and postmortem brains of schizophrenia patients, and psychosis-prone normal individuals. Mammalian target of rapamycin (mTOR) complex 2 (mTORC2) is a multiprotein complex that is responsible for phosphorylation of Akt at Ser473 (pAkt-473). We demonstrate that mice with disrupted mTORC2 signaling in brain exhibit altered striatal DA-dependent behaviors, such as increased basal locomotion, stereotypic counts, and exaggerated response to the psychomotor effects of amphetamine (AMPH). Combining in vivo and ex vivo pharmacological, electrophysiological, and biochemical techniques, we demonstrate that the changes in striatal DA neurotransmission and associated behaviors are caused, at least in part, by elevated D2 DA receptor (D2R) expression and upregulated ERK1/2 activation. Haloperidol, a typical antipsychotic and D2R blocker, reduced AMPH hypersensitivity and elevated pERK1/2 to the levels of control animals. By viral gene delivery, we downregulated mTORC2 solely in the dorsal striatum of adult wild-type mice, demonstrating that striatal mTORC2 regulates AMPH-stimulated behaviors. Our findings implicate mTORC2 signaling as a novel pathway regulating striatal DA tone and D2R signaling.


Assuntos
Proteínas de Transporte/metabolismo , Dopamina/metabolismo , Transmissão Sináptica/genética , Anfetamina/metabolismo , Anfetamina/farmacologia , Animais , Proteínas de Transporte/genética , Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Haloperidol/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Nestina/genética , Proteína Oncogênica v-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Serina/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Nat Chem Biol ; 10(7): 582-589, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880859

RESUMO

Phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates the function of ion channels and transporters. Here, we demonstrate that PIP2 directly binds the human dopamine (DA) transporter (hDAT), a key regulator of DA homeostasis and a target of the psychostimulant amphetamine (AMPH). This binding occurs through electrostatic interactions with positively charged hDAT N-terminal residues and is shown to facilitate AMPH-induced, DAT-mediated DA efflux and the psychomotor properties of AMPH. Substitution of these residues with uncharged amino acids reduces hDAT-PIP2 interactions and AMPH-induced DA efflux without altering the hDAT physiological function of DA uptake. We evaluated the significance of this interaction in vivo using locomotion as a behavioral assay in Drosophila melanogaster. Expression of mutated hDAT with reduced PIP2 interaction in Drosophila DA neurons impairs AMPH-induced locomotion without altering basal locomotion. We present what is to our knowledge the first demonstration of how PIP2 interactions with a membrane protein can regulate the behaviors of complex organisms.


Assuntos
Anfetamina/farmacologia , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Substituição de Aminoácidos , Animais , Membrana Celular/efeitos dos fármacos , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Drosophila melanogaster/fisiologia , Expressão Gênica , Humanos , Locomoção/efeitos dos fármacos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacologia , Estrutura Terciária de Proteína , Transgenes
9.
Proc Natl Acad Sci U S A ; 110(28): 11642-7, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798435

RESUMO

Nerve functions require phosphatidylinositol-4,5-bisphosphate (PIP2) that binds to ion channels, thereby controlling their gating. Channel properties are also attributed to serotonin transporters (SERTs); however, SERT regulation by PIP2 has not been reported. SERTs control neurotransmission by removing serotonin from the extracellular space. An increase in extracellular serotonin results from transporter-mediated efflux triggered by amphetamine-like psychostimulants. Herein, we altered the abundance of PIP2 by activating phospholipase-C (PLC), using a scavenging peptide, and inhibiting PIP2-synthesis. We tested the effects of the verified scarcity of PIP2 on amphetamine-triggered SERT functions in human cells. We observed an interaction between SERT and PIP2 in pull-down assays. On decreased PIP2 availability, amphetamine-evoked currents were markedly reduced compared with controls, as was amphetamine-induced efflux. Signaling downstream of PLC was excluded as a cause for these effects. A reduction of substrate efflux due to PLC activation was also found with recombinant noradrenaline transporters and in rat hippocampal slices. Transmitter uptake was not affected by PIP2 reduction. Moreover, SERT was revealed to have a positively charged binding site for PIP2. Mutation of the latter resulted in a loss of amphetamine-induced SERT-mediated efflux and currents, as well as a lack of PIP2-dependent effects. Substrate uptake and surface expression were comparable between mutant and WT SERTs. These findings demonstrate that PIP2 binding to monoamine transporters is a prerequisite for amphetamine actions without being a requirement for neurotransmitter uptake. These results open the way to target amphetamine-induced SERT-dependent actions independently of normal SERT function and thus to treat psychostimulant addiction.


Assuntos
Anfetamina/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Células HEK293 , Humanos , Sistemas do Segundo Mensageiro , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
10.
J Biol Chem ; 288(6): 4194-207, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23233681

RESUMO

The cardiac Na(+)/Ca(2+) exchanger (NCX1.1) serves as the primary means of Ca(2+) extrusion across the plasma membrane of cardiomyocytes after the rise in intracellular Ca(2+) during contraction. The exchanger is regulated by binding of Ca(2+) to its intracellular domain, which contains two structurally homologous Ca(2+) binding domains denoted as CBD1 and CBD2. NMR and x-ray crystallographic studies have provided structures for the isolated CBD1 and CBD2 domains and have shown how Ca(2+) binding affects their structures and motional dynamics. However, structural information on the entire Ca(2+) binding domain, denoted CBD12, and how binding of Ca(2+) alters its structure and dynamics is more limited. Site-directed spin labeling has been employed in this work to address these questions. Electron paramagnetic resonance measurements on singly labeled constructs of CBD12 have identified the regions that undergo changes in dynamics as a result of Ca(2+) binding. Double electron-electron resonance (DEER) measurements on doubly labeled constructs of CBD12 have shown that the ß-sandwich regions of the CBD1 and CBD2 domains are largely insensitive to Ca(2+) binding and that these two domains are widely separated at their N and C termini. Interdomain distances measured by DEER have been employed to construct structural models for CBD12 in the presence and absence of Ca(2+). These models show that there is not a major change in the relative orientation of the two Ca(2+) binding domains as a result of Ca(2+) binding in the NCX1.1 isoform. Additional measurements have shown that there are significant changes in the dynamics of the F-G loop region of CBD2 that merit further characterization with regard to their possible involvement in regulation of NCX1.1 activity.


Assuntos
Cálcio/química , Modelos Moleculares , Trocador de Sódio e Cálcio/química , Animais , Cálcio/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
11.
J Neurosci ; 32(8): 2637-47, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22357848

RESUMO

The dopamine (DA) transporter (DAT) is a major target for abused drugs and a key regulator of extracellular DA. A rapidly growing literature implicates insulin as an important regulator of DAT function. We showed previously that amphetamine (AMPH)-evoked DA release is markedly impaired in rats depleted of insulin with the diabetogenic agent streptozotocin (STZ). Similarly, functional magnetic resonance imaging experiments revealed that the blood oxygenation level-dependent signal following acute AMPH administration in STZ-treated rats is reduced. Here, we report that these deficits are restored by repeated, systemic administration of AMPH (1.78 mg/kg, every other day for 8 d). AMPH stimulates DA D(2) receptors indirectly by increasing extracellular DA. Supporting a role for D(2) receptors in mediating this "rescue," the effect was completely blocked by pre-treatment of STZ-treated rats with the D(2) receptor antagonist raclopride before systemic AMPH. D(2) receptors regulate DAT cell surface expression through ERK1/2 signaling. In ex vivo striatal preparations, repeated AMPH injections increased immunoreactivity of phosphorylated ERK1/2 (p-ERK1/2) in STZ-treated but not control rats. These data suggest that repeated exposure to AMPH can rescue, by activating D(2) receptors and p-ERK signaling, deficits in DAT function that result from hypoinsulinemia. Our data confirm the idea that disorders influencing insulin levels and/or signaling, such as diabetes and anorexia, can degrade DAT function and that insulin-independent pathways are present that may be exploited as potential therapeutic targets to restore normal DAT function.


Assuntos
Corpo Estriado/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Dopamina D2/metabolismo , Anfetamina/uso terapêutico , Análise de Variância , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Corpo Estriado/irrigação sanguínea , Dopamina/metabolismo , Dopaminérgicos/uso terapêutico , Esquema de Medicação , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Processamento de Imagem Assistida por Computador , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Racloprida/farmacologia , Ratos , Ratos Sprague-Dawley
12.
J Neurosci ; 32(16): 5385-97, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22514303

RESUMO

Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed disorder of school-age children. Although genetic and brain-imaging studies suggest a contribution of altered dopamine (DA) signaling in ADHD, evidence of signaling perturbations contributing to risk is largely circumstantial. The presynaptic, cocaine- and amphetamine (AMPH)-sensitive DA transporter (DAT) constrains DA availability at presynaptic and postsynaptic receptors following vesicular release and is targeted by the most commonly prescribed ADHD therapeutics. Using polymorphism discovery approaches with an ADHD cohort, we identified a hDAT (human DAT) coding variant, R615C, located in the distal C terminus of the transporter, a region previously implicated in constitutive and regulated transporter trafficking. Here, we demonstrate that, whereas wild-type DAT proteins traffic in a highly regulated manner, DAT 615C proteins recycle constitutively and demonstrate insensitivity to the endocytic effects of AMPH and PKC (protein kinase C) activation. The disrupted regulation of DAT 615C parallels a redistribution of the transporter variant away from GM1 ganglioside- and flotillin1-enriched membranes, and is accompanied by altered CaMKII (calcium/calmodulin-dependent protein kinase II) and flotillin-1 interactions. Using C-terminal peptides derived from wild-type DAT and the R615C variant, we establish that the DAT 615C C terminus can act dominantly to preclude AMPH regulation of wild-type DAT. Mutagenesis of DAT C-terminal sequences suggests that phosphorylation of T613 may be important in sorting DAT between constitutive and regulated pathways. Together, our studies support a coupling of DAT microdomain localization with transporter regulation and provide evidence of perturbed DAT activity and DA signaling as a risk determinant for ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Microdomínios da Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Anfetamina/farmacologia , Análise de Variância , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzilaminas/farmacologia , Biotinilação , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Transformada , Criança , Pré-Escolar , Toxina da Cólera/metabolismo , Estudos de Coortes , Dopamina/metabolismo , Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Eletroquímica , Feminino , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Sulfonamidas/farmacologia , Transfecção/métodos , Trítio/metabolismo
13.
PLoS Biol ; 8(6): e1000393, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20543991

RESUMO

The mammalian target of rapamycin (mTOR) complex 2 (mTORC2) is a multimeric signaling unit that phosphorylates protein kinase B/Akt following hormonal and growth factor stimulation. Defective Akt phosphorylation at the mTORC2-catalyzed Ser473 site has been linked to schizophrenia. While human imaging and animal studies implicate a fundamental role for Akt signaling in prefrontal dopaminergic networks, the molecular mechanisms linking Akt phosphorylation to specific schizophrenia-related neurotransmission abnormalities have not yet been described. Importantly, current understanding of schizophrenia suggests that cortical decreases in DA neurotransmission and content, defined here as cortical hypodopaminergia, contribute to both the cognitive deficits and the negative symptoms characteristic of this disorder. We sought to identify a mechanism linking aberrant Akt signaling to these hallmarks of schizophrenia. We used conditional gene targeting in mice to eliminate the mTORC2 regulatory protein rictor in neurons, leading to impairments in neuronal Akt Ser473 phosphorylation. Rictor-null (KO) mice exhibit prepulse inhibition (PPI) deficits, a schizophrenia-associated behavior. In addition, they show reduced prefrontal dopamine (DA) content, elevated cortical norepinephrine (NE), unaltered cortical serotonin (5-HT), and enhanced expression of the NE transporter (NET). In the cortex, NET takes up both extracellular NE and DA. Thus, we propose that amplified NET function in rictor KO mice enhances accumulation of both NE and DA within the noradrenergic neuron. This phenomenon leads to conversion of DA to NE and ultimately supports both increased NE tissue content as well as a decrease in DA. In support of this hypothesis, NET blockade in rictor KO mice reversed cortical deficits in DA content and PPI, suggesting that dysregulation of DA homeostasis is driven by alteration in NET expression, which we show is ultimately influenced by Akt phosphorylation status. These data illuminate a molecular link, Akt regulation of NET, between the recognized association of Akt signaling deficits in schizophrenia with a specific mechanism for cortical hypodopaminergia and hypofunction. Additionally, our findings identify Akt as a novel modulator of monoamine homeostasis in the cortex.


Assuntos
Proteínas de Transporte/fisiologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/fisiologia , Córtex Pré-Frontal/metabolismo , Esquizofrenia/fisiopatologia , Animais , Proteínas de Transporte/genética , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Serina/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição
15.
Front Cell Neurosci ; 17: 1161930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180953

RESUMO

Synthesized in the liver from cholesterol, the bile acids (BAs) primary role is emulsifying fats to facilitate their absorption. BAs can cross the blood-brain barrier (BBB) and be synthesized in the brain. Recent evidence suggests a role for BAs in the gut-brain signaling by modulating the activity of various neuronal receptors and transporters, including the dopamine transporter (DAT). In this study, we investigated the effects of BAs and their relationship with substrates in three transporters of the solute carrier 6 family. The exposure to obeticholic acid (OCA), a semi-synthetic BA, elicits an inward current (IBA) in the DAT, the GABA transporter 1 (GAT1), and the glycine transporter 1 (GlyT1b); this current is proportional to the current generated by the substrate, respective to the transporter. Interestingly, a second consecutive OCA application to the transporter fails to elicit a response. The full displacement of BAs from the transporter occurs only after exposure to a saturating concentration of a substrate. In DAT, perfusion of secondary substrates norepinephrine (NE) and serotonin (5-HT) results in a second OCA current, decreased in amplitude and proportional to their affinity. Moreover, co-application of 5-HT or NE with OCA in DAT, and GABA with OCA in GAT1, did not alter the apparent affinity or the Imax, similar to what was previously reported in DAT in the presence of DA and OCA. The findings support the previous molecular model that suggested the ability of BAs to lock the transporter in an occluded conformation. The physiological significance is that it could possibly avoid the accumulation of small depolarizations in the cells expressing the neurotransmitter transporter. This achieves better transport efficiency in the presence of a saturating concentration of the neurotransmitter and enhances the action of the neurotransmitter on their receptors when they are present at reduced concentrations due to decreased availability of transporters.

16.
Sci Rep ; 13(1): 13359, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591972

RESUMO

Psychostimulants target the dopamine transporter (DAT) to elicit their psychomotor actions. Bile acids (BAs) can also bind to DAT and reduce behavioral responses to cocaine, suggesting a potential therapeutic application of BAs in psychostimulant use disorder. Here, we investigate the potential of BAs to decrease drug-primed reinstatement when administered during an abstinence phase. To do this, after successful development of cocaine-associated contextual place preference (cocaine CPP), cocaine administration was terminated, and animals treated with vehicle or obeticholic acid (OCA). When preference for the cocaine-associated context was extinguished, mice were challenged with a single priming dose of cocaine, and reinstatement of cocaine-associated contextual preference was measured. Animals treated with OCA demonstrate a significantly lower reinstatement for cocaine CPP. OCA also impairs the ability of cocaine to reduce the clearance rate of electrically stimulated dopamine release and diminishes the area under the curve (AUC) observed with amperometry. Furthermore, the AUC of the amperometric signal positively correlates with the reinstatement index. Using operant feeding devices, we demonstrate that OCA has no effect on contextual learning or motivation for natural rewards. These data highlight OCA as a potential therapeutic for cocaine use disorder.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Animais , Camundongos , Ácidos e Sais Biliares , Dopamina , Cocaína/farmacologia , Aprendizagem , Condicionamento Clássico
17.
Sci Adv ; 9(2): eadd8417, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630507

RESUMO

Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.


Assuntos
Dopamina , Sintaxina 1 , Animais , Anfetamina/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster/metabolismo , Fosforilação , Sintaxina 1/genética , Sintaxina 1/metabolismo
18.
Biochemistry ; 51(39): 7685-98, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22950482

RESUMO

Syntaxin (STX) is a N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein that binds to the plasma membrane and regulates ion channels and neurotransmitter transporters. Experiments have established the involvement of the N-terminal segment of STX in direct protein-protein interactions and have suggested a critical role for the phosphorylation of serine 14 (S14) by casein kinase-2 (CK2). Because the organization of STX in the plasma membrane was shown to be regulated by phosphatidylinositol 4,5-biphosphate (PIP(2)) lipids, we investigated the mechanistic involvement of PIP(2) lipids in modulating both the membrane interaction and the phosphorylation of STX, using a computational strategy that integrates mesoscale continuum modeling of protein-membrane interactions, with all-atom molecular dynamics (MD) simulations. Iterative applications of this protocol produced quantitative evaluations of lipid-type demixing due to the protein and identified conformational differences between STX immersed in PIP(2)-containing and PIP(2)-depleted membranes. Specific sites in STX were identified to be important for the electrostatic interactions with the PIP(2) lipids attracted to the protein, and the segregation of PIP(2) lipids near the protein is shown to have a dramatic effect on the positioning of the STX N-terminal segment with respect to the membrane/water interface. This PIP(2)-dependent repositioning is shown to modulate the extent of exposure of S14 to large reagents representing the CK2 enzyme and hence the propensity for phosphorylation. The prediction of STX sites involved in such PIP(2)-dependent regulation of STX phosphorylation at S14 offers experimentally testable probes of the mechanisms and models presented in this study, through structural modifications that can modulate the effects.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Qa-SNARE/metabolismo , Sequência de Aminoácidos , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfatidilcolinas/metabolismo , Fosforilação , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Qa-SNARE/química , Proteínas SNARE/metabolismo , Alinhamento de Sequência
19.
J Neurosci ; 30(23): 7863-77, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534835

RESUMO

The norepinephrine transporter (NET) is a presynaptic plasma membrane protein that mediates reuptake of synaptically released norepinephrine. NET is also a major target for medications used for the treatment of depression, attention deficit/hyperactivity disorder, narcolepsy, and obesity. NET is regulated by numerous mechanisms, including catalytic activation and membrane trafficking. Amphetamine (AMPH), a psychostimulant and NET substrate, has also been shown to induce NET trafficking. However, neither the molecular basis nor the nature of the relevant membrane compartments of AMPH-modulated NET trafficking has been defined. Indeed, direct visualization of drug-modulated NET trafficking in neurons has yet to be demonstrated. In this study, we used a recently developed NET antibody and the presence of large presynaptic boutons in sympathetic neurons to examine basal and AMPH-modulated NET trafficking. Specifically, we establish a role for Rab11 in AMPH-induced NET trafficking. First, we found that, in cortical slices, AMPH induces a reduction in surface NET. Next, we observed AMPH-induced accumulation and colocalization of NET with Rab11a and Rab4 in presynaptic boutons of cultured neurons. Using tagged proteins, we demonstrated that NET and a truncated Rab11 effector (FIP2DeltaC2) do not redistribute in synchrony, whereas NET and wild-type Rab11a do. Analysis of various Rab11a/b mutants further demonstrates that Rab11 regulates NET trafficking. Expression of the truncated Rab11a effector (FIP2DeltaC2) attenuates endogenous Rab11 function and prevented AMPH-induced NET internalization as does GDP-locked Rab4 S22N. Our data demonstrate that AMPH leads to an increase of NET in endosomes of single boutons and varicosities in a Rab11-dependent manner.


Assuntos
Adrenérgicos/farmacologia , Anfetamina/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Biotinilação , Células Cultivadas , Imunofluorescência , Gânglios Simpáticos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mutação , Neurônios/efeitos dos fármacos , Transporte Proteico , Ratos , Transdução de Sinais , Vesículas Sinápticas/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo
20.
J Neurosci ; 30(34): 11305-16, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20739551

RESUMO

Noradrenergic signaling in the CNS plays an essential role in circuits involving attention, mood, memory, and stress as well as providing pivotal support for autonomic function in the peripheral nervous system. The high-affinity norepinephrine (NE) transporter (NET) is the primary mechanism by which noradrenergic synaptic transmission is terminated. Data indicate that NET function is regulated by insulin, a hormone critical for the regulation of metabolism. Given the high comorbidity of metabolic disorders such as diabetes and obesity with mental disorders such as depression and schizophrenia, we sought to determine how insulin signaling regulates NET function and thus noradrenergic homeostasis. Here, we show that acute insulin treatment, through the downstream kinase protein kinase B (Akt), significantly decreases NET surface expression in mouse hippocampal slices and superior cervical ganglion neuron boutons (sites of synaptic NE release). In vivo manipulation of insulin/Akt signaling, with streptozotocin, a drug that induces a type 1-like diabetic state in mice, also results in aberrant NET function and NE homeostasis. Notably, we also demonstrate that Akt inhibition or stimulation, independent of insulin, is capable of altering NET surface availability. These data suggest that aberrant states of Akt signaling such as in diabetes and obesity have the potential to alter NET function and noradrenergic tone in the brain. Furthermore, they provide one potential molecular mechanism by which Akt, a candidate gene for mood disorders such as schizophrenia and depression, can impact brain monoamine homeostasis.


Assuntos
Homeostase/fisiologia , Insulina/fisiologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Norepinefrina/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA