Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(6): 063602, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822072

RESUMO

Bosonic interference is a fundamental physical phenomenon, and it is believed to lie at the heart of quantum computational advantage. It is thus necessary to develop practical tools to witness its presence, both for a reliable assessment of a quantum source and for fundamental investigations. Here we describe how linear interferometers can be used to unambiguously witness genuine n-boson indistinguishability. The amount of violation of the proposed witnesses bounds the degree of multiboson indistinguishability, for which we also provide a novel intuitive model using set theory. We experimentally implement this test to bound the degree of three-photon indistinguishability in states we prepare using parametric down-conversion. Our approach results in a convenient tool for practical photonic applications, and may inspire further fundamental advances based on the operational framework we adopt.

2.
Sci Adv ; 10(30): eado6244, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058770

RESUMO

A Bernoulli factory is a randomness manipulation routine that takes as input a Bernoulli random variable, outputting another Bernoulli variable whose bias is a function of the input bias. Recently proposed quantum-to-quantum Bernoulli factory schemes encode both input and output variables in qubit amplitudes. This primitive could be used as a subroutine for more complex quantum algorithms involving Bayesian inference and Monte Carlo methods. Here, we report an experimental implementation of a polarization-encoded photonic quantum-to-quantum Bernoulli factory. We present and test three interferometric setups implementing the basic operations of an algebraic field (inversion, multiplication, and addition), which, chained together, allow for the implementation of a generic quantum-to-quantum Bernoulli factory. These in-bulk schemes are validated using a quantum dot-based single-photon source featuring high brightness and indistinguishability, paired with a time-to-spatial demultiplexing setup to prepare input resources of up to three single-photon states.

3.
Phys Rev Lett ; 111(13): 130503, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116759

RESUMO

We perform a comprehensive set of experiments that characterize bosonic bunching of up to three photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently, predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. In addition to its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.

4.
Sci Adv ; 9(44): eadj4249, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922346

RESUMO

Quantum superposition of high-dimensional states enables both computational speed-up and security in cryptographic protocols. However, the exponential complexity of tomographic processes makes certification of these properties a challenging task. In this work, we experimentally certify coherence witnesses tailored for quantum systems of increasing dimension using pairwise overlap measurements enabled by a six-mode universal photonic processor fabricated with a femtosecond laser writing technology. In particular, we show the effectiveness of the proposed coherence and dimension witnesses for qudits of dimensions up to 5. We also demonstrate advantage in a quantum interrogation task and show it is fueled by quantum contextuality. Our experimental results testify to the efficiency of this approach for the certification of quantum properties in programmable integrated photonic platforms.

5.
Sci Bull (Beijing) ; 63(22): 1470-1478, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658828

RESUMO

Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity. Moreover, it is necessary in practical applications such as linear optical quantum computation and simulation, in particular for Boson Sampling devices. It is thus crucial to develop tools to certify genuine multiphoton interference between multiple sources. Our approach employs the total variation distance to find those transformations that minimize the error probability in discriminating the behaviors of distinguishable and indistinguishable photons. In particular, we show that so-called Sylvester interferometers are near-optimal for this task. By using Bayesian tests and inference, we numerically show that Sylvester transformations largely outperform most Haar-random unitaries in terms of sample size required. Furthermore, we experimentally demonstrate the efficacy of the transformation using an efficient 3D integrated circuits in the single- and multiple-source cases. We then discuss the extension of this approach to a larger number of photons and modes. These results open the way to the application of Sylvester interferometers for optimal assessment of multiphoton interference experiments.

6.
Sci Adv ; 1(3): e1400255, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26601164

RESUMO

Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

7.
Phys Rev Lett ; 90(8): 087902, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633461

RESUMO

We show that a qubit can be used to substitute for a classical analog system requiring an arbitrarily large number of classical bits to represent digitally. Let a physical system S interact locally with a classical field varphi(x) as S travels directly from point A to point B. Our task is to use S to answer a simple yes/no question about varphi(x). If S is a qubit, the task can be done perfectly. We show that any classical system S must encode an arbitrarily large number of classical bits to solve the same task. This result implies a large quantum advantage in the memory size necessary for some computations. We also show that no finite amount of one-way classical communication can perfectly simulate the effect of quantum entanglement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA