Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984366

RESUMO

This study introduced phosphogypsum coupled with steel slag powder to prepare the phosphogypsum based filler (PF) for asphalt mixture. Penetration, penetration index, softening point, ductility, equivalent softening point, moisture stability of asphalt mortars with different steel slag powder content, filler-asphalt ratio, and PF content were studied. Mechanical properties of PF based asphalt mortar (P-AM) were then analyzed to determine the optimum steel slag content in PF. Overall desirability method was used to determine the optimum replacement ratio of PF content in limestone filler. Rheological properties of P-AM were also analyzed through dynamic shear rheometer. Volumetric performance, high-temperature performance, low-temperature performance, and moisture stability tests were carried out on PF based AC-20 asphalt mixture. Results showed that P-AM presented the optimum performance when the content of steel slag powder was 23% by mass of phosphogypsum. Fatigue and rutting factor of asphalt mortar were enhanced by PF. The optimum PF content in replacing limestone filler was 75% through overall desirability evaluation. PF developed the high-temperature performance and moisture stability of asphalt mixture. Additionally, volumetric and low-temperature performance were not significantly affected by PF. It is suggested that using PF which is based on phosphogypsum as a filler of asphalt mixture to partially replace traditional limestone filler was adequate.

2.
Sci Total Environ ; 669: 342-352, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884259

RESUMO

Urbanization not only directly alters the regional ecosystem net primary productivity (NPP) through land-cover replacement, but it is also accompanied by huge indirect impacts due to the associated climate change and anthropogenic activities. However, to date, limited efforts have been made to quantitatively separate the two types of urbanization impacts, and the continuous variations over a long-time span are not well understood. In this study, both the long-term direct and indirect impacts of urbanization on NPP were established and analyzed based on multi-source remote sensing data, taking the city of Kunming in China as a case study area. The results indicated that the intense urbanization process has led to a continuous decrease in NPP from 1990 to 2014, due to the direct impact of land-cover replacement. Nevertheless, the urbanization has also resulted in an apparently positive indirect impact on NPP, which has offset about 30% of the direct impact in recent years. The increasing trend of the indirect impact was found to be higher than the NPP trend in the surrounding forest areas, which proves that vegetation growth has been promoted by the urban environment. The indirect impact has also shown great spatial and temporal heterogeneity, with generally higher values in the old city area and winter season. This can mostly be attributed to the distribution of temperature, i.e., the urban heat island effect, which has shown a significantly positive correlation with the indirect impact. However, the correlations between NPP and climatic factors were found to be completely different, which confirmed the need to separate the direct and indirect impacts. Overall, this study has demonstrated that urbanization has reduced the total NPP over the region, but has promoted some vegetation growth, and the knowledge of the indirect impact will help to support urban greening planning.


Assuntos
Monitoramento Ambiental , Urbanização/tendências , China , Cidades , Mudança Climática , Ecossistema , Modelos Teóricos , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA