Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 86(6): 3292-3303, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272898

RESUMO

PURPOSE: Investigating the designs and effects of high dielectric constant (HDC) materials in the shape of a conformal helmet on the enhancement of RF field and reduction of specific absorption rate at 10.5 T for human brain studies. METHODS: A continuous and a segmented four-piece HDC helmet fit to a human head inside an eight-channel fractionated-dipole array were constructed and studied with a phantom and a human head model using computer electromagnetic simulations. The simulated transmit efficiency and receive sensitivity were experimentally validated using a phantom with identical electric properties and helmet-coil configurations of the computer model. The temporal and spatial distributions of displacement currents on the HDC helmets were analyzed. RESULTS: Using the continuous HDC helmet, simulation results in the human head model demonstrated an average transmit efficiency enhancement of 66%. A propagating displacement current was induced on the continuous helmet, leading to an inhomogeneous RF field enhancement in the brain. Using the segmented four-piece helmet design to reduce this effect, an average 55% and 57% enhancement in the transmit efficiency and SNR was achieved in human head, respectively, along with 8% and 28% reductions in average and maximum local specific absorption rate. CONCLUSION: The HDC helmets enhanced the transmit efficiency and SNR of the dipole array coil in the human head at 10.5 T. The segmentation of the helmet to disrupt the continuity of circumscribing displacement currents in the helmet produced a more uniform distribution of the transmit field and lower specific absorption rate in the human head compared with the continuous helmet design.


Assuntos
Dispositivos de Proteção da Cabeça , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Ondas de Rádio
2.
Magn Reson Med ; 83(3): 1123-1134, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31502708

RESUMO

PURPOSE: To present a 3T brain imaging study using a conformal prototype helmet constructed with an ultra-high dielectric constant (uHDC; εr ~ 1000) materials that can be inserted into standard receive head-coils. METHODS: A helmet conformal to a standard human head constructed with uHDC materials was characterized through electromagnetic simulations and experimental work. The signal-to-noise ratio (SNR), transmit efficiency, and power deposition with the uHDC helmet inserted within a 20-channel head coil were measured in vivo and compared with a 64-channel head coil and the 20-channel coil without the helmet. Seven healthy volunteers were analyzed. RESULTS: Simulation and in vivo experimental results showed that transmit efficiency was improved by nearly 3 times within localized regions for a quadrature excitation, with a measured global increase of 58.21 ± 6.54% over 7 volunteers. The use of a parallel transmit spokes pulse compensated for severe degradation of B1+ homogeneity, at the expense of higher global and local specific absorption rate levels. A SNR histogram analysis with statistical testing demonstrated that the uHDC helmet enhanced a 20-channel head coil to the level of the 64-channel head coil, with the improvements mainly within the cortical brain regions. CONCLUSION: A prototype uHDC helmet enhanced the SNR of a standard head coil to the level of a high density 64-channel coil, although transmit homogeneity was compromised. Further improvements in SNR may be achievable with optimization of this technology, and could be a low-cost approach for future radiofrequency engineering work in the brain at 3T.


Assuntos
Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Posicionamento do Paciente/instrumentação , Imagens de Fantasmas , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Radiação Eletromagnética , Feminino , Voluntários Saudáveis , Humanos , Neuroimagem , Posicionamento do Paciente/métodos , Ondas de Rádio , Reprodutibilidade dos Testes , Razão Sinal-Ruído
3.
IEEE Trans Med Imaging ; 39(10): 3187-3197, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32310763

RESUMO

This work introduces an innovative magnetic resonance (MR) imaging technology that incorporates radiofrequency (RF) coil(s) with permittivity-tunable ultrahigh dielectric constant (tuHDC) ceramics to significantly improve RF coil transmission and reception efficiencies, MR imaging sensitivity and signal-to-noise ratio (SNR). The tuHDC ceramics made of composite barium strontium titanate (BST) compounds (Ba0.6 Sr0.4 TiO3) have low dielectric loss and very high permittivity tunability from 2,000 to 15000 by varying the ceramic temperature between 0°C and 40°C to achieve an optimal permittivity for MR imaging application. We demonstrated for the first time the proof of concept using the BST-based tuHDC-RF-coil technology to improve MR spectroscopic imaging performance of 17O nuclide at 10.5 Tesla (T) at a low ceramic temperature and 23Na nuclide at 7T at room temperature. We discovered a large and spatially independent noise reduction under an optimal ceramic temperature, which synergistically resulted in an unprecedented SNR improvement. Large improvements were also demonstrated for 1H MRI on a 1.5T clinical scanner using the same ceramics. The tuHDC-RF-coil technology is robust, flexible and cost-effective; it presents a technical breakthrough to significantly improve imaging sensitivity and resolution for broad MR imaging applications; which is critical for advancing biomedical and neuroscience research, and improving diagnostic imaging.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Cerâmica , Desenho de Equipamento , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA