Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Mol Med ; 28(8): e18122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652110

RESUMO

Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.


Assuntos
Biomarcadores , Proteômica , Humanos , Biomarcadores/sangue , Proteômica/métodos , Feminino , Masculino , Adulto , Doenças Neuromusculares/sangue , Doenças Neuromusculares/genética , Doenças Neuromusculares/metabolismo , Pessoa de Meia-Idade , Proteoma/metabolismo , Leucócitos/metabolismo
3.
Front Pediatr ; 12: 1278047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445077

RESUMO

Background/purpose: MEGDHEL syndrome is a rare autosomal recessive metabolic disorder, which is characterized by 3-methylglutaconic aciduria with deafness-dystonia, hepatopathy, encephalopathy and Leigh-like syndrome. It is caused by biallelic pathogenic variants in the SERAC1 gene. Due to the unspecific symptoms and the diverse manifestations of the clinical phenotype, the diagnosis is challenging. Infantile MEGDHEL syndrome often has a severe disease course with acute liver failure. Differentiation from other metabolic disorders is difficult and requires a multidisciplinary approach. Case presentation: A two-day-old small for gestational age neonate was admitted to our pediatric intensive care unit (PICU) due to severe liver failure with distinct hyperammonemia and hypoglycemia without elevation of transaminases or cholestasis. Due to high ammonia level, continuous hemodialysis was established immediately after admission. In addition, protein intake was stopped, and the patient anabolized with intravenous glucose. Temporary stabilization could be achieved after four days. In the further course, severe neurological and cardiocirculatory complications occurred, which ultimately led to the infant's death. In the metabolic diagnostics, a pronounced lactate acidosis and in urine an increased excretion of 3-methylglutaconic acid as well as other metabolites of mitochondrial energy metabolism has been the leading findings besides the hyperammonemia. Post-mortem trio whole genome analysis detected a homozygous pathogenic variant in SERAC1 with evidence of SERAC1 deficiency leading to the diagnosis of infantile MEGDHEL syndrome. Conclusion: When pediatricians are faced with hepatopathy or even acute liver failure without elevation of transaminases or cholestasis in newborns, SERAC1 deficiency should be considered as a potential differential diagnosis. The initial treatment is based on the recommended management of suspected metabolic disorders. Even while no cure is available yet, patients should be offered proper supportive management through a multidisciplinary team. In addition, genetic confirmation of the diagnosis is important for the families, especially regarding further family planning.If a newborn presents with hyperammonemia, hypoglycemia and impaired liver synthesis function without elevation of transaminases or cholestasis, the possible presence of MEGDHEL syndrome due to a SERAC1 mutation should be considered.

4.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217609

RESUMO

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Humanos , Masculino , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Atrofia Óptica/genética , Proteômica
5.
Pediatr Infect Dis J ; 43(6): e214-e217, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451881

RESUMO

The European Society for Clinical Microbiology and Infectious Diseases recommends 3rd generation cephalosporins and metronidazole for empirical treatment of community-acquired brain abscesses. In 53 retrospectively analyzed pediatric patients with community-acquired brain abscesses at a German University Hospital Staphylococcus aureus was identified as a relevant pathogen (21%). Therefore, it may be reasonable to cover S. aureus when selecting empirical therapy.


Assuntos
Antibacterianos , Abscesso Encefálico , Infecções Comunitárias Adquiridas , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Estudos Retrospectivos , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/microbiologia , Abscesso Encefálico/microbiologia , Abscesso Encefálico/tratamento farmacológico , Criança , Masculino , Feminino , Antibacterianos/uso terapêutico , Pré-Escolar , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Adolescente , Staphylococcus aureus/efeitos dos fármacos , Lactente , Alemanha/epidemiologia , Metronidazol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA