Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 210(6): 764-773, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723033

RESUMO

Implementation of conjugate vaccine technology revolutionized the ability to effectively elicit long-lasting immune responses to bacterial capsular polysaccharides. Although expansion of conjugate vaccine serotype coverage is designed to target residual disease burden to pneumococcal serotypes not contained in earlier vaccine versions, details of polysaccharide Ag structure, heterogeneity, and epitope structure components contributing to vaccine-mediated immunity are not always clear. Analysis of Streptococcus pneumoniae serotype 12F polysaccharide by two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry revealed a partial substitution of N-acetyl-galactosamine by the keto sugar 2-acetamido-2,6-dideoxy-xylo-hexos-4-ulose (Sug) in up to 25% of the repeat units. This substitution was not described in previous published structures for 12F. Screening a series of contemporary 12F strains isolated from humans (n = 17) identified Sug incorporation at varying levels in all strains examined. Thus, partial Sug substitution in S. pneumoniae serotype 12F may have always been present but is now detectable by state-of-the-art analytical techniques. During the steps of conjugation, the serotype 12F Sug epitope is modified by reduction, and both polysaccharide PPSV23 and conjugate PCV20 vaccines contain 12F Ags with little to no Sug epitope. Both PCV20 and PPSV23 vaccines were evaluated for protection against circulating 12F strains with varying amounts of Sug in their repeat unit based on an opsonophagocytic killing assay involving HL-60 cells and rabbit complement. Both vaccines elicited human-derived neutralizing Abs against serotype 12F, independent of Sug level between ∼2 and 25 mol%. These findings suggest that the newly identified serotype 12F Sug epitope is likely not an essential epitope for vaccine-elicited protection.


Assuntos
Imunogenicidade da Vacina , Streptococcus pneumoniae , Humanos , Sorogrupo , Vacinas Conjugadas , Espectroscopia de Ressonância Magnética
2.
Vaccine ; 40(33): 4872-4880, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35810060

RESUMO

Protection conferred by pneumococcal polysaccharide conjugate vaccines (PCVs) is associated with PCV-induced antibodies against vaccine-covered serotypes that exhibit functional opsonophagocytic activity (OPA). Structural similarity between capsular polysaccharides of closely related serotypes may result in induction of cross-reactive antibodies with or without a cross-functional activity against a serotype not covered by a PCV, with the former providing an additional protective clinical benefit. Serotypes 15B, 15A, and 15C, in the serogroup 15, are among the most prevalent Streptococcus pneumoniae serotypes associated with invasive pneumococcal disease following the implementation of a 13-valent PCV; in addition, 15B contributes significantly to acute otitis media. Serological discrimination between closely related serotypes such as 15B and 15C is complicated; here, we implemented an algorithm to quickly differentiate 15B from its closely related serotypes 15C and 15A directly from whole-genome sequencing data. In addition, molecular dynamics simulations of serotypes 15A, 15B, and 15C polysaccharides demonstrated that while 15B and 15C polysaccharides assume rigid branched conformation, 15A polysaccharide assumes a flexible linear conformation. A serotype 15B conjugate, included in a 20-valent PCV (PCV20), induced cross-functional OPA serum antibody responses against the structurally similar serotype 15C but not against serotype 15A, both not included in PCV20. In PCV20-vaccinated adults (18-49 years), robust OPA antibody titers were detected against both serotypes 15B (the geometric mean titer [GMT] of 19,334) and 15C (GMTs of 1692 and 2747 for strains PFE344340 and PFE1160, respectively), but were negligible against serotype 15A (GMTs of 10 and 30 for strains PFE593551 and PFE647449, respectively). Cross-functional 15B/C responses were also confirmed using sera from a larger group of older adults (60-64 years).


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Idoso , Anticorpos Antibacterianos , Humanos , Imunidade , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Polissacarídeos , Sorogrupo , Vacinas Conjugadas
3.
Nat Biotechnol ; 21(8): 932-5, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12845329

RESUMO

This report describes a transfection-independent system for packaging alphavirus replicon vectors using modified vaccinia virus Ankara (MVA) vectors to express all of the RNA components necessary for the production of Venezuelan equine encephalitis (VEE) virus replicon particles (VRP). Infection of mammalian cells with these recombinant MVA vectors resulted in robust expression of VEE structural genes, replication of the alphavirus vector and high titers of VRP. In addition, VRP packaging was achieved in a cell type (fetal rhesus lung) that has been approved for the manufacturing of vaccines destined for human use.


Assuntos
DNA Viral/administração & dosagem , DNA Viral/genética , Sistemas de Liberação de Medicamentos/métodos , Vírus da Encefalite Equina Venezuelana/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Replicon/genética , Transfecção/métodos , Vaccinia virus/genética , Vírion/genética , Alphavirus/genética , Regulação Viral da Expressão Gênica
4.
J Virol Methods ; 109(2): 133-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12711055

RESUMO

Alphavirus replicon particles are being exploited for a variety of purposes both in vitro as gene expression vectors, and in vivo as vaccines or gene therapy vectors. There is a need for a simple and universal method of titration of replicon particles that is independent of expression of the foreign protein. We devised a method that uses modified vaccinia virus Ankara (MVA) as an indicator virus, to deliver a Venezuelan equine encephalitis virus (VEE) defective helper RNA encoding green fluorescent protein (GFP). Co-infection of cells with the MVA-based indicator and Venezuelan equine encephalitis virus replicon particles (VRP) results in expression of the GFP gene. VRP titer is readily determined by counting fluorescent cells.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Vírus Defeituosos/genética , Vírus da Encefalite Equina Venezuelana/genética , Proteínas Luminescentes/genética , Replicon/genética , Animais , Chlorocebus aethiops , Proteínas de Fluorescência Verde , Vaccinia virus/genética , Células Vero
5.
Vaccine ; 32(12): 1398-406, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24462481

RESUMO

The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-ßgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-ßgluc elicited a highly protective immune response. UL24-ßgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-ßgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-ßgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-ßgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine.


Assuntos
Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/genética , Vagina/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Cobaias , Herpesvirus Humano 2/patogenicidade , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/sangue , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Linfócitos T Citotóxicos/imunologia , Vacinas Atenuadas/imunologia , Vagina/imunologia , Proteínas Virais/genética , Virulência
6.
Vaccine ; 25(12): 2296-305, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17239997

RESUMO

The safety of a propagation-defective Venezuelan equine encephalitis virus (VEEV) replicon particle vaccine was examined in mice. After intracranial inoculation we observed approximately 5% body weight loss, modest inflammatory changes in the brain, genome replication, and foreign gene expression. These changes were transient and significantly less severe than those caused by TC-83, a live-attenuated vaccinal strain of VEEV that has been safely used to immunize military personnel and laboratory workers. Replicon particles injected intramuscularly or intravenously were detected at limited sites 3 days post-administration, and were undetectable by day 22. There was no evidence of dissemination to spinal cord or brain after systemic administration. These results demonstrate that propagation-defective VEEV replicon particles are minimally neurovirulent and lack neuroinvasive potential.


Assuntos
Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/imunologia , Replicon/genética , Proteínas do Envelope Viral/genética , Animais , Peso Corporal , Encéfalo/metabolismo , Encéfalo/virologia , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/prevenção & controle , Injeções Intramusculares , Injeções Intravenosas , Camundongos , RNA Viral/genética , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Medula Espinal/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Replicação Viral/genética
7.
J Virol ; 80(9): 4447-57, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611905

RESUMO

Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.


Assuntos
Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Células Th1/imunologia , Vagina/imunologia , Vagina/virologia , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/imunologia , Animais , Formação de Anticorpos/imunologia , Feminino , Vetores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Cobaias , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Camundongos , Modelos Animais , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
8.
J Virol ; 79(16): 10498-506, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16051842

RESUMO

A herpes simplex virus type 2 (HSV-2) UL24 beta-glucuronidase (UL24-betagluc) insertion mutant was derived from HSV-2 strain 186 via standard marker transfer techniques. Cell monolayers infected with UL24-betagluc yielded cytopathic effect with syncytium formation. UL24-betagluc replicated to wild-type viral titers in three different cell lines. UL24-betagluc was not virulent after intravaginal inoculation of BALB/c mice in that all inoculated animals survived doses up to 400 times the 50% lethal dose (LD50) of the parental virus. Furthermore, few UL24-betagluc-inoculated mice developed any vaginal lesions. Intravaginal inoculation of guinea pigs with UL24-betagluc at a dose equivalent to the LD50 of parental virus (approximately 5 x 10(3) PFU) was not lethal (10/10 animals survived). Although genital lesions developed in some UL24-betagluc-inoculated guinea pigs, both the overall number of lesions and the severity of disease were far less than that observed for animals infected with parental strain 186.


Assuntos
Modelos Animais de Doenças , Herpes Simples/etiologia , Herpesvirus Humano 2/genética , Proteínas Virais/genética , Animais , Sequência de Bases , Feminino , Genoma Viral , Cobaias , Herpesvirus Humano 2/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Timidina Quinase/fisiologia , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA