Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 75(4): 566-575, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30238146

RESUMO

Despite irrefutable evidence of its negative impact on animal behaviour and physiology, lethal and sublethal lead poisoning of wildlife is still persistent and widespread. For scavenging birds, ingestion of ammunition, or fragments thereof, is the major exposure route. In this study, we examined the occurrence of lead in four avian scavengers of Switzerland and how it differs between species, regions, and age of the bird. We measured lead concentration in liver and bone of the two main alpine avian scavengers (golden eagle Aquila chrysaetos and bearded vulture Gypaetus barbatus) over the entire area of the Swiss Alps and two of the main avian scavengers occurring in the lowlands of Switzerland (red kite Milvus milvus and common raven Corvus corax). Of those four species, only the bearded vulture is an obligate scavenger. We found that lead burdens in the two alpine avian scavengers were higher than those found for the same species elsewhere in Europe or North America and reached levels compatible with acute poisoning, whereas lead burdens of the two lowland avian scavengers seemed to be lower. Several golden eagles, but only one red kite with abnormally high bone lead concentrations were found. In all four species, a substantial proportion of birds had elevated levels which presumably represent recent (liver lead levels) or past (bone lead levels) uptake of sublethal doses of lead.


Assuntos
Aves , Exposição Ambiental/análise , Poluentes Ambientais/análise , Intoxicação por Chumbo/veterinária , Chumbo/análise , Fatores Etários , Animais , Comportamento Animal , Osso e Ossos/química , Corvos , Águias , Ecotoxicologia/métodos , Poluentes Ambientais/farmacocinética , Falconiformes , Chumbo/farmacocinética , Fígado/química , Especificidade da Espécie , Suíça , Distribuição Tecidual
2.
Sci Total Environ ; 949: 174986, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053556

RESUMO

The importance of understanding the long-lasting legacy of past land use on modern ecosystems has long been acknowledged. However, the magnitude and persistence of such legacies have been assessed only occasionally. Northern Greece has been a gateway of farming into mainland Europe during the Neolithic, thus providing a perfect setting to assess the potential impact of land-use history on present-day ecosystems. Additionally, the marked Holocene climatic variability of the southern Balkans makes it possible to investigate climate-vegetation-land use interactions over long timescales. Here, we have studied a sediment record from Limni Vegoritis (Northern Greece) spanning the past ∼9000 years using palaeoecological proxies (pollen, spores, stomata, microscopic charcoal). We aimed to reconstruct long-term vegetation dynamics in submediterranean Greece, to assess the environmental factors controlling them and to establish the legacies of the long history of land use in the modern landscape. We found that the Early Holocene afforestation, mainly oak woodlands, was delayed because of suboptimal moisture conditions. Later, colder and drier conditions during the rapid climate change centred around the '8.2 ka event' triggered woodland opening and the spread of wooded (Juniperus) steppe vegetation. First indicators of farming activities are recorded during this period, but their abundances are too low to explain the concurrent large deforestation episode. Later, pinewoods (probably dominated by Pinus nigra) with deciduous Quercus spread and dominated the landscape for several millennia. These forests experienced repeated multi-centennial setback-recovery episodes associated with land-use intensification, but pines eventually declined ∼2500-2000 years ago during Classical times under heavy land use comprising intense pastoralism. This was the starting point for the present-day landscape, where the main 'foundation' taxon of the ancient forests (Pinus cf. nigra) is missing, therefore attesting to the strong imprint that historical land use has left on the modern landscape.


Assuntos
Agricultura , Mudança Climática , Ecossistema , Grécia , Florestas , Monitoramento Ambiental , Conservação dos Recursos Naturais
3.
PLoS One ; 15(4): e0231925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330170

RESUMO

During the periodic moult of the plumage of birds, a fast regrowth of feathers would shorten the time of reduced plumage functionality. However, it has long been known that feather growth-rate is limited and that long feathers take disproportionally longer to grow than small feathers, which has severe consequences on moult duration and the completeness of moult in large birds. The reasons for the limitations of feather-growth must be related to the size and/or functions of the feather follicle, but are largely unknown. Here we measured the size of the feather follicle (taking calamus width as a proxy) and related it to parameters of feather growth (feather growth-rate by mass and by length) and feather structure (feather length, mass, massiveness [mass of feather material per mm feather-length]). We used three independent datasets which allowed for interspecific analyses, and for intraspecific comparisons of differently structured feathers within the framework of biological scaling. We found that the cross-sectional area of the calamus (as a proxy of feather follicle size) was directly proportional to feather growth-rate by mass. Hence, factors acting at a two-dimensional scale (possibly nutrient supply to the growing feather) determines feather growth rate by mass, rather than the linear arrangement of stem cells (in a circular configuration) as had previously been assumed. Feather follicle size was correlated with both feather length and massiveness, hence it seems to be adapted to some extent to feather structure. Feather growth-rate by length was dependent on both the feather material produced per unit time (growth-rate by mass) and the amount of material deposited per unit feather-length. Follicle size not only determines feather growth-rate by mass, but also directly the structural design (shape, number of barbs, etc.) of a feather. Therefore, feather growth-rate is severely constrained by the requirements imposed by the structural feather design.


Assuntos
Plumas/crescimento & desenvolvimento , Animais , Aves/crescimento & desenvolvimento , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA