Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Angew Chem Int Ed Engl ; : e202416672, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392592

RESUMO

Reprogrammable shape morphing is ubiquitous in living beings and highly crucial for them to move in normal situations, even to survive under dangerous conditions. There is increasing interest in using asymmetric hydrogel structures to understand and mimic living beings' shape morphing upon an external trigger in a controlled way. However, these asymmetric or heterogeneous configurations cannot be further modified once the polymer hydrogels are prepared. Therefore, it is a great challenge to achieve reprogrammable shape morphing using the existing hydrogels. Inspired by marine amoebae, which transform into several different morphologies according to the various external salt concentrations, a new strategy is developed for salting hydrogels to reconfigure their anisotropy toward reprogrammable shape morphing. Polyampholyte hydrogels with equal stoichiometric COO‒ and N+(CH3)3 groups were first swollen in HCl/NaCl solution. After being then transferred into water, they first swollen again by water uptake driven by the osmotic pressure, and then were spontaneously deswollen due to increase in internal pH and dialysis of ions leading to deprotonation of COOH to COO‒ and regeneration of COO‒/N+(CH3)3 electrostatic attraction. This work provides a novel strategy to reconfigure anisotropy of hydrogel soft actuators and to open up an avenue for reprogrammable shape morphing.

2.
Soft Matter ; 18(37): 7103-7111, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36082742

RESUMO

Based on the demand for flexible human-machine interaction devices, it is urgent to develop high-performance stretchable ionic conductive materials. However, most gel-based ionic conductive materials are composed of crosslinked polymer networks that contain liquids, and suffer from limitations of solvent volatilization and leakage, and the cross-linking restricts the movement and diffusion of polymer chains, making it difficult for them to achieve adhesion. Here, we introduce flexible and adhesive liquid-free ionic conductive elastomers (ICE) with salt using a non-crosslinked polymer strategy. The ICE show a transparency of 89.5%, Tg of -51.2 °C, negligible weight loss at 200 °C, a tensile fracture strain of 289.5%, and an initial modulus of 45.7 kPa, and is adhesive to various solid surfaces with an interfacial toughness of 11.4 to 41.4 J m-2. Moreover, the ICE exhibit stable electrical conductivity under ambient conditions. Triboelectric nanogenerators (TENGs) were assembled on an electrical shell surface with the adhesive ICE as an electrostatic induction layer and were displayed for use as human-machine interactive keyboards. This approach opens a route to making adhesive and stable polymer ionic conductors for human-machine interaction.


Assuntos
Adesivos , Elastômeros , Condutividade Elétrica , Humanos , Íons , Polímeros , Solventes
3.
Macromol Rapid Commun ; 42(22): e2100480, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34505726

RESUMO

Bionic skin sensors based on conductive polymer gels have garnered interest for their potential applications in human-computer interaction, soft robotics, biomedical systems, sports, and healthcare, because of their intrinsic flexibility and stretchability embedded at the material level, and other such as self-healing, adhesion, high, and low temperature tolerance properties that can be tuned through macromolecular design. Here, important advances in polymer gel-based flexible sensors over recent years are summarized, from material design, sensor fabrication to system-level applications. This review focuses on the representative strategies of design and preparing of conductive polymer gels, and adjusting their conductivity, mechanics, and other properties such as self-healing and adhesiveness by controlling the macromolecular network structures. The state-of-art of present flexible pressure and strain sensors, temperature sensors, position sensors, and multifunctional sensors based on capacitance, voltage, and resistance sensing technologies, are also systematically reviewed. Finally, perspectives on issues regarding further advances and challenges are provided.


Assuntos
Polímeros , Dispositivos Eletrônicos Vestíveis , Biônica , Condutividade Elétrica , Humanos , Hidrogéis
4.
Clin Orthop Relat Res ; 473(3): 760-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25106800

RESUMO

BACKGROUND: Radiation-crosslinked UHMWPE has been used for joint implants since the 1990s. Postirradiation remelting enhances oxidative stability, but with some loss in strength and toughness. Vitamin E-stabilized crosslinked UHMWPE has shown improved strength and stability as compared with irradiated and remelted UHMWPE. With more active phenolic hydroxyl groups, natural polyphenols are widely used in the food and pharmaceutical industries as potent stabilizers and could be useful for oxidative stability in crosslinked UHMWPE. QUESTIONS/PURPOSES: We asked whether UHMWPE blended with polyphenols would (1) show higher oxidation resistance after radiation crosslinking; (2) preserve the mechanical properties of UHMWPE after accelerated aging; and (3) alter the wear resistance of radiation-crosslinked UHMWPE. METHODS: The polyphenols, gallic acid and dodecyl gallate, were blended with medical-grade UHMWPE followed by consolidation and electron beam irradiation at 100 kGy. Radiation-crosslinked virgin and vitamin E-blended UHMWPEs were used as reference materials. The UHMWPEs were aged at 120 °C in air with oxidation levels analyzed by infrared spectroscopy. Tensile (n = 5 per group) and impact (n = 3 per group) properties before and after aging as per ASTM F2003 were evaluated. The wear rates were examined by pin-on-disc testing (n = 3 per group). The data were reported as mean ± SDs. Statistical analysis was performed by using Student's t-test for a two-tailed distribution with unequal variance for tensile and impact data obtained with n ≥ 3. A significant difference is defined with p < 0.05. RESULTS: The oxidation induction time of 100 kGy UHMWPE was prolonged to 144 hours with 0.05 wt% dodecyl gallate and 192 hours with 0.05 wt% gallic acid compared with 48 hours for 0.05 wt% vitamin E-blended UHMWPE. Accelerated aging of these polyphenol-blended UHMWPEs resulted in ultimate tensile strength of 50.4 ± 1.4 MPa and impact strength of 53 ± 5 kJ/m(2) for 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate, for example, in comparison to 51.2 ± 0.7 MPa (p = 0.75) and 58 ± 5 kJ/m(2) (p = 0.29) before aging. The pin-on-disc wear rates of 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate and 0.05 wt% gallic acid were 2.29 ± 0.31 and 1.65 ± 0.32 mg/million cycles, comparable to 1.68 ± 0.25 and 2.05 ± 0.22 mg/million cycles for 100 kGy-irradiated virgin and 0.05 wt% vitamin E-blended UHMWPE. CONCLUSIONS: Based on the sample numbers tested in this study, polyphenols appear to effectively enhance the oxidation stability without altering the mechanical properties or pin-on-disc wear rate of radiation-crosslinked UHMWPE. CLINICAL RELEVANCE: Crosslinked UHMWPE with natural polyphenols with improved oxidative stability and low wear may find clinical application in joint implants.


Assuntos
Prótese Articular , Polietilenos , Polifenóis , Desenho de Prótese , Materiais Biocompatíveis , Humanos , Teste de Materiais , Resistência à Tração , Vitamina E
5.
ACS Appl Mater Interfaces ; 15(12): 16090-16096, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926835

RESUMO

Hydrogel actuators showing shape morphing in response to external stimuli are of significant interest for their applications in soft robots, artificial muscles, etc. However, there is still a lack of hydrogel actuators with adjustable stimulus responsiveness for on-demand driving. In this study, an organohydrogel actuator was prepared by a two-step interpenetrating method, resulting in the coexistence of poly(N-isopropylacrylamide-co-4-(2-sulfoethyl)-1-(4-vinylbenzyl) pyridinium betaine) (p(NIPAM-SVBP)) hydrophilic networks and poly(lauryl methacrylate) (pLMA) hydrophobic networks with gradient distribution. In the initial state, the organohydrogel actuator can be driven globally under thermal stimulation. Owing to the unique alkali-chromic performance of SVBP, the organohydrogel actuator can be endowed with photothermal properties and actuate locally under the stimulus of NIR light. More importantly, the organohydrogel will return to the original colorless state after being treated with acid solution. Our work provides a new insight into designing and fabricating novel actuators with adjustable stimulus responsiveness for on-demand morphing.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(8): 2085-8, 2012 Aug.
Artigo em Zh | MEDLINE | ID: mdl-23156757

RESUMO

Infrared spectra are often corrupted by noise, which may greatly influence the accuracy and precision of the analytical result. To improve the analytical precision, the authors need to denoise the spectrum data first. In the present paper, a spectrum denoising method by the second generation wavelet transform domain thresholding combined with the median filtering is introduced. The spectrum of a certain kind of wheat was used to test the performance of the proposed denoising method. In the experiment,noise with signal to noise ratio 21.17 dB was first added to the spectrum, and then removed by the proposed denoising method. The signal to noise ratio (SNR), the root mean square error (RMSE), the average relative error of the peak value (AREPV) and the average error of the peak position (AEPP) were used to evaluate the performance of the proposed denoising method. Experimental results show that the proposed method can remove the spectrum noise and keep the useful information more effective than Donoho's soft and hard threshold method. At the same time, it can achieve a higher PSNR, a lower RMSE, a lower AREPV and a lower AEPP than the other two denoising methods.

7.
PLoS One ; 17(3): e0264793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239722

RESUMO

Mixed Gaussian and Random-valued impulse noise (RVIN) removal is still a big challenge in the field of image denoising. Existing denoising algorithms have defects in denoising performance and computational complexity. Based on the improved "detecting then filtering" strategy and the idea of inpainting, this paper proposes an efficient method to remove mixed Gaussian and RVIN. The proposed algorithm contains two phases: noise classification and noise removal. The noise classifier is based on Adaptive center-weighted median filter (ACWMF), three-sigma rule and extreme value processing. Different from the traditional "detecting then filtering" strategy, a preliminary RVIN removal step is added to the noise removal phase, which leads to three steps in this phase: preliminary RVIN removal, Gaussian noise removal and final RVIN removal. Firstly, RVIN is processed to obtain a noisy image approximately corrupted by Gaussian noise only. Subsequently, Gaussian noise is re-estimated and then denoised by Block Matching and 3D filtering method (BM3D). At last, the idea of inpainting is introduced to further remove RVIN. Extensive experimental results demonstrate that the proposed method outperforms quantitatively and visually to the state-of-the-art mixed Gaussian and RVIN removal methods. In addition, it greatly shortens the computation time.


Assuntos
Algoritmos , Distribuição Normal , Razão Sinal-Ruído
8.
Adv Mater ; 32(50): e2004290, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174265

RESUMO

There is an increasing interest to develop a next generation of touch pads that require stretchability and biocompatibility to allow their integration with a human body, and even to mimic the self-healing behavior with fast functionality recovery upon damage. However, most touch pads are developed based on stiff and brittle electrodes with the lack of the important nature of self-healing. Polyzwitterion-clay nanocomposite hydrogels as a soft, stretchable, and transparent ionic conductor with transmittance of 98.8% and fracture strain beyond 1500% are developed, which can be used as a self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on target substrates. A surface-capacitive touch system is adopted to sense a touched position. Finger positions are perceived during both point-by-point touch and continuous moving. Hydrogel touch pads are adhered to curved or flat insulators, with the high-resolution and self-healable input functions demonstrated by drawing, writing, and playing electronic games.


Assuntos
Biomimética/instrumentação , Pressão , Tato , Adesividade , Capacitância Elétrica , Humanos
9.
ACS Appl Mater Interfaces ; 12(47): 52307-52318, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33183010

RESUMO

Acute wounds subject to frequent deformations are difficult to be treated because the healing process was easily interfered by external mechanical forces. Traditional wound dressings have limited efficacy because of their poor mechanical properties and skin adhesiveness and difficulty in the delivery of therapeutic drugs effectively. As such, tough and skin-adhesive wound dressings with sustainable and stimuli-responsive drug release properties for treatment of those wounds are highly desirable. For this purpose, we have developed a mechano-responsive poly(sulfobetaine methacrylate) hydrogel which aims to control the delivery of antibiotic drug upon application of mechanical forces. Diacrylated Pluronic F127 micelles were used as a macro-cross-linker of the hydrogel and loaded with hydrophobic antimicrobial drugs. The micelle-cross-linked hydrogel has excellent mechanical properties, with the ultimate tensile strength and tensile strain of up to 112 kPa and 1420%, respectively, and compressive stress of up to 1.41 MPa. Adhesiveness of the hydrogel to the skin tissue was ∼6 kPa, and it did not decrease significantly after repetitive adhesion cycles. Protein adsorption on the hydrogel was significantly inhibited compared to that on commercial wound dressings. Because of the mechano-responsive deformation of micelles, the release of drug from the hydrogel could be precisely controlled by the extent and cycles of mechanical loading and unloading, endowing the hydrogel with superior antibacterial property against both Gram-positive and Gram-negative bacteria. In addition, drug penetration into the skin tissue was enhanced by mechanical stress applied to the hydrogel. The micelle-cross-linked zwitterionic hydrogel also showed good cell biocompatibility, negligible skin irritation, and healing capacity to acute skin wounds in mice. Such a tough mechano-responsive hydrogel holds great promise as wound dressings for acute wounds subjected to frequent movements.


Assuntos
Antibacterianos/química , Hidrogéis/química , Cicatrização , Adesividade , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bandagens , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Masculino , Camundongos , Micelas , Poloxâmero/química , Coelhos , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia , Resistência à Tração , Cicatrização/efeitos dos fármacos
10.
ACS Appl Mater Interfaces ; 11(3): 3506-3515, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30592203

RESUMO

It is desired to create skin strain sensors composed of multifunctional conductive hydrogels with excellent toughness and adhesion properties to sustain cyclic loadings during use and facilitate the electrical signal transmission. Herein, we prepared transparent, compliant, and adhesive zwitterionic nanocomposite hydrogels with excellent mechanical properties. The incorporated zwitterionic polymers can form interchain dipole-dipole associations to offer additional physical cross-linking of the network. The hydrogels show a high fracture elongation up to 2000%, a fracture strength up to 0.27 MPa, and a fracture toughness up to 2.45 MJ/m3. Moreover, the reversible physical interaction imparts the hydrogels with rapid self-healing ability without any stimuli. The hydrogels are adhesive to many surfaces including polyelectrolyte hydrogels, skin, glasses, silicone rubbers, and nitrile rubbers. The presence of abundant zwitterionic groups facilitates ionic conductivity in the hydrogels. The combination of these properties enables the hydrogels to act as strain sensors with high sensitivity (gauge factor = 1.8). The strategy to design the tough, adhesive, self-healable, and conductive hydrogels as skin strain sensors by the zwitterionic nanocomposite hydrogels is promising for practical applications.


Assuntos
Técnicas Biossensoriais , Condutividade Elétrica , Hidrogéis/química , Nanocompostos/química , Adesivos/química , Humanos , Íons/química , Polímeros/química , Pele/diagnóstico por imagem , Pele/lesões , Entorses e Distensões/diagnóstico , Entorses e Distensões/patologia
11.
J Mater Chem B ; 7(1): 24-29, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254947

RESUMO

Inspired by biosystem, ionic hydrogels have been extensively studied as promising materials for wearable or implantable devices. Herein, we report novel ionic hydrogels that comprise dynamically crosslinked polyzwitterion and physically crosslinked polyvinyl alcohol, which demonstrate excellent mechanical properties, repeatable self-adhesion, and high and linear strain sensitivity. The obtained hydrogels can be directly attached to human skin as sensors to detect or monitor physiological signals.


Assuntos
Adesivos/química , Elastômeros/química , Hidrogéis/química , Dispositivos Eletrônicos Vestíveis , Íons/química , Álcool de Polivinil/química
12.
J Mater Chem B ; 7(16): 2619-2625, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254994

RESUMO

Intelligent hydrogels responsive to external stimuli have been widely studied due to their great potentials for applications in artificial muscles, soft robotics, sensors and actuators. However, the weak mechanical properties, narrow response range, and slow response speed of many responsive hydrogels have hindered practical applications. In this paper, tough multi-responsive hydrogels were synthesized by using vinyl-functionalized triblock copolymer micelles as macro-crosslinkers and N-isopropyl acrylamide (NIPAM) and acrylamide (AAm) or 2-(dimethylamino)ethyl methacrylate (DMAEMA) and 2-acrylamido-2-methyl-1-propane-sulfonic acid (AMPS) as monomers. The P(NIPAM-co-AAm) hydrogels presented tensile strength of up to 1.6 MPa and compressive strength of up to 127 MPa and were tunable by changing their formulations. Moreover, the lower critical solution temperature (LCST) of the thermosensitive hydrogels was manipulated in a wide range by changing the molar ratio of NIPAM to AAm. Responsive hydrogel bilayers were fabricated through a two-step synthesis. A second layer of P(DMAEMA-co-AMPS) was synthesized on the first P(NIPAM-co-AAm) layer to obtain a bilayer hydrogel, which was responsive to temperature, pH and ionic strength changes to undergo fast and reversible shape transformation in a few minutes. This kind of strong and tough multi-responsive hydrogel device has broad prospects in soft actuators.


Assuntos
Hidrogéis/química , Acrilamidas/química , Alcanossulfonatos/química , Força Compressiva , Metacrilatos/química , Micelas , Polímeros/química , Resistência à Tração
13.
ACS Appl Mater Interfaces ; 10(48): 41724-41731, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30387979

RESUMO

Responsive hydrogel actuators have promising applications in diverse fields. Most hydrogel actuators are limited by slow actuation or shape transformations. This work reports on snap-buckling motivated jumping of thermoresponsive hydrogel bilayers. The bilayers are composed of poly(NIPAM- co-DMAPMA)/clay hydrogel with different lower critical solution temperatures in each layer, and thus undergo slow reversible curling/uncurling at temperature changes. The gels are adhesive to numerous materials including aluminum. The adhesion between the gels and an aluminum ratchet is utilized to constrain the thermoresponsive deformation of the bilayers to store elastic energy. When the accumulated elastic energy overwhelms the gel-aluminum adhesion, snap-buckling takes place to abruptly release the accumulated energy, which motivates the bilayer to jump. The jumping direction, start time, height, and distance are controlled by the geometry of the bilayers or the ratchet. This work paves a novel way for the rapid actuation of responsive hydrogels in a controlled manner and may stimulate the development of novel hydrogel devices.

14.
J Mater Chem B ; 6(2): 257-264, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254168

RESUMO

Stimulus-responsive hydrogels are assembled into soft devices that transform their shape upon external stimuli. It is very important to understand the macroscopic assembly mechanisms and to modulate the interface stability of assemblies. In this study, polyelectrolyte hydrogels with outstanding mechanical performances and opposite charges were assembled into soft devices via electrostatic association. The interface strength could be tuned by varying the net charge density, which depends on the concentration of charged/chargeable monomers, the pH of the buffer solution, and the ionic strength of the solution. We propose that charge screening at the interface by free counterions causes a reduction of interface strength, whereas charge redistribution is helpful to strengthen the interface of the assemblies. The understanding of macroscopic assembly mechanisms provides significant guidelines for designing novel soft transducers and drivers and engineering their interface strength.

15.
J Mater Chem B ; 5(3): 511-516, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263667

RESUMO

Graphene composite hydrogels have wide potential applications as biomaterials. Herein, l-cysteine was used to reduce graphene oxide (GO) into hydrogels. Systematic investigations by FTIR, Raman spectroscopy, TEM, and other methods reveal that the reduced graphene oxide (rGO) nanosheets are likely bridged by l-cysteine molecules, forming porous hydrogels with the rGO nanosheets stacked into layered structures on the walls. Such layered structures, as well as the reduction, are critical for the improvement of conductivity by four to five orders of magnitude in comparison to graphene oxide. In vitro cell culture experiments demonstrate excellent cell adhesion and growth on these reduced graphene oxide hydrogels. These conductive rGO hydrogels may find applications in electrical stimulation to facilitate cell adhesion and growth.

16.
J Mater Chem B ; 4(19): 3239-3246, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263259

RESUMO

Responsive nanocomposite hydrogels are widely recognized as strong and tough soft materials for smart devices, but there are still challenges in their synthesis and in the fabrication of devices. We report here the versatile synthesis of nanocomposite polyelectrolyte hydrogels with high strength and toughness using either cationic or anionic monomers and demonstrate the simple and versatile fabrication of bilayer actuators by assembling the oppositely charged hydrogels through electrostatic attraction. Exfoliated sodium montmorillonite nanosheets were used as cross-linkers through the adsorption of monomers and initiators before in situ free radical polymerization. Nanocomposite hydrogels with negative charges were obtained by the copolymerization of acrylamide and 2-acrylamido-2-methylpropanesulfonic acid, whereas positively charged nanocomposite gels were obtained using acrylamide and dimethylaminoethyl methacrylate methylchloride. The nanocomposite polyelectrolyte hydrogels were responsive to pH and the ionic strength of buffer solutions. They also showed outstanding fatigue resistance against cyclic compression loading and high tensile strength and toughness. The gels were able to recover at room temperature after tensile testing. The oppositely charged hydrogels were assembled with a robust interface based on the electrostatic attraction between the opposite charges. These hydrogels were actuated under an electric field. The oppositely charged hydrogels were assembled into bilayers that were reversibly actuated as a result of the contrasting responsiveness of each gel to the ionic strength.

17.
J Mater Chem B ; 4(9): 1733-1739, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263024

RESUMO

Multi-responsive hydrogels with high strength have great significance for potential applications in smart soft devices. However, it remains a challenge to incorporate multiple responsive moieties with energy dissipation mechanisms. Herein, multi-responsive nanocomposite hydrogels with high compressive strength and toughness were synthesized via in situ copolymerization of N-isopropylacrylamide (NIPAM) and acryloyloxyethyltrimethyl ammonium chloride (DAC) in an aqueous dispersion of exfoliated LAPONITE® RDS with a minute amount of N,N'-methylenebisacrylamide (MBAA) as a crosslinker. The combined use of clay and MBAA is demonstrated to be favorable for the high strength and toughness, and helped in avoiding precipitation of clay nanosheets, which otherwise occurred upon addition of cationic DAC. The effect of the NIPAM/DAC molar ratio, MBAA and clay contents on the properties of the hydrogels has been systematically investigated. Compression tests showed a compressive strength up to 6.2 MPa, with fracture strain higher than 90%. The presence of ionic DAC moieties in the hydrogels rendered a very high swelling ratio up to 40 (g g-1). These hydrogels were responsive to temperature changes due to the presence of NIPAM units, with the transition temperature (Ttrans) dependent on the molar ratio of NIPAM and DAC monomers. The internal electrostatic repulsion of the NIPAM/DAC copolymer network changed upon exposure to solutions with different pH and/or ion strength. Cyclic swelling-shrinking was demonstrated by shuttling the gels between pure water and 0.1 mol L-1 NaCl solution.

18.
J Mater Chem B ; 4(40): 6609, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263704

RESUMO

Correction for 'Multi-responsive nanocomposite hydrogels with high strength and toughness' by Jingli Yang et al., J. Mater. Chem. B, 2016, 4, 1733-1739.

19.
ACS Appl Mater Interfaces ; 8(39): 26326-26331, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27617830

RESUMO

Multiresponsive polyelectrolyte hydrogels with extraordinary toughness have great potential in soft device applications. Previously we have demonstrated a series of tough and multiresponsive hydrogels by using multifunctional triblock copolymer (Pluronic F127 diacrylate, F127DA) micelles to cross-link cationic polyelectrolyte chains into 3D network. Herein, we further synthesize negatively charged hydrogels comprising 2-acrylamido-2-methyl propylsulfonic acid (AMPS) monomers by using F127DA micelles as cross-linkers. Similar to the positive nanomicelle (NM) hydrogels, the negative NM hydrogels exhibited a compressive strength up to 59 MPa with a fracture strain up to 98%, and tensile fracture strain higher than 2000%. These charged hydrogels were actuated by electric field when immersed in salt solutions. The effects of electrolyte concentration, electric field strength, and ionic monomer content on the electric actuation behavior of these electroactive hydrogels (EAHs) have been systematically investigated. It is concluded that the electroactive hydrogels show a fast actuation rate with a bending angle up to 87° at 120 s and the bending angle was cyclically reversed upon changing bias direction without a large decrease. This study demonstrates that such tough and multiresponsive electroactive hydrogels may have great potential in sensors, actuators, switches, and artificial muscles.

20.
ACS Appl Mater Interfaces ; 7(8): 5029-37, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25668063

RESUMO

Nanocomposite hydrogels with unprecedented stretchability, toughness, and self-healing have been developed by in situ polymerization of acrylamide with the presence of exfoliated montmorillonite (MMT) layers as noncovalent cross-linkers. The exfoliated MMT clay nanoplatelets with high aspect ratios, as confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results, are well dispersed in the polyacrylamide matrix. Strong polymer/MMT interaction was confirmed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The effective cross-link densities of these hydrogels are estimated in the range of 2.2-5.7 mol m(-3). Uniaxial tensile tests showed a very high fracture elongation up to 11 800% and a fracture toughness up to 10.1 MJ m(-3). Cyclic loading-unloading tests showed remarkable hysteresis, which indicates energy dissipation upon deformation. Residual strain after cyclic loadings could be recovered under mild conditions, with the recovery extent depending on clay content. A mechanism based on reversible desorption/adsorption of polymer chains on clay platelets surface is discussed. Finally, these nanocomposite hydrogels are demonstrated to fully heal by dry-reswell treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA