Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(14): 5874-5882, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35763376

RESUMO

Constructing 3D skeletons modified with lithiophilic seeds has proven effective in achieving dendrite-free lithium metal anodes. However, these lithiophilic seeds are mostly alloy- or conversion-type materials, and they tend to aggregate and redistribute during cycling, resulting in the failure of regulating Li deposition. Herein, we address this crucial but long-neglected issue by using intercalation-type lithiophilic seeds, which enable antiaggregation owing to their negligible volume expansion and high electrochemical stability against Li. To exemplify this, a 3D carbon-based host is built, in which ultrafine TiO2 seeds are uniformly embedded in nitrogen-doped hollow porous carbon spheres (N-HPCSs). The TiO2@N-HPCSs electrode exhibits superior Coulombic efficiency, high-rate capability, and long-term stability when evaluated as compertitive anodes for Li metal batteries. Furthermore, the superiority of intercalation-type seeds is comprehensively revealed through controlled experiments by various in situ/ex situ electron and optical microscopies, which highlights the excellent structural stability and lithiophilicity of TiO2 nanoseeds upon repeated cycling.


Assuntos
Lítio , Sementes , Carbono , Eletrodos
2.
Nat Commun ; 13(1): 5050, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030266

RESUMO

Solid electrolytes hold the promise for enabling high-performance lithium (Li) metal batteries, but suffer from Li-filament penetration issues. The mechanism of this rate-dependent failure, especially the impact of the electrochemo-mechanical attack from Li deposition, remains elusive. Herein, we reveal the Li deposition dynamics and associated failure mechanism of solid electrolyte by visualizing the Li|Li7La3Zr2O12 (LLZO) interface evolution via in situ transmission electron microscopy (TEM). Under a strong mechanical constraint and low charging rate, the Li-deposition-induced stress enables the single-crystal Li to laterally expand on LLZO. However, upon Li "eruption", the rapidly built-up local stress, reaching at least GPa level, can even crack single-crystal LLZO particles without apparent defects. In comparison, Li vertical growth by weakening the mechanical constraint can boost the local current density up to A·cm-2 level without damaging LLZO. Our results demonstrate that the crack initiation at the Li|LLZO interface depends strongly on not only the local current density but also the way and efficiency of mass/stress release. Finally, potential strategies enabling fast Li transport and stress relaxation at the interface are proposed for promoting the rate capability of solid electrolytes.

3.
ACS Appl Mater Interfaces ; 13(45): 53818-53828, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730928

RESUMO

Despite the high specific capacity of silicon as a promising anode material for the next-generation high-capacity Li-ion batteries (LIBs), its practical applications are impeded by the rapid capacity decay during cycling. To tackle the issue, herein, a binder-grafting strategy is proposed to construct a covalently cross-linked binder [carboxymethyl cellulose/phytic acid (CMC/PA)], which builds a robust branched network with more contact points, allowing stronger bonds with Si nanoparticles by hydrogen bonding. Benefitting from the enhanced mechanical reliability, the resulting Si-CMC/PA electrodes exhibit a high reversible capacity with improved long-term cycling stability. Moreover, an assembled full cell consisting of the as-obtained Si-CMC/PA anode and commercial LiFePO4 cathode also exhibits excellent cycling performance (120.4 mA h g-1 at 1 C for over 100 cycles with 88.4% capacity retention). In situ transmission electron microscopy was employed to visualize the binding effect of CMC/PA, which, unlike the conventional CMC binder, can effectively prevent the lithiated Si anodes from cracking. Furthermore, the combined ex situ microscopy and X-ray photoelectron spectroscopy analysis unveils the origin of the superior Li-ion storage performance of the Si-CMC/PA electrode, which arises from its excellent structural integrity and the stabilized solid-electrolyte interphase films during cycling. This work presents a facile and efficient binder-engineering strategy for significantly improving the performance of Si anodes for next-generation LIBs.

4.
ACS Appl Mater Interfaces ; 11(49): 45674-45682, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714058

RESUMO

Cation-disordered rock-salt oxides with the O2-/O2n- redox reaction, such as Li1.2Mn0.4Ti0.4O2 (LMTO), are critical Li-rich cathode materials for designing high-energy-density batteries. Understanding the cationic-anionic redox accompanying the structural evolution process is really imperative to further improve the performance. In this work, the cationic-anionic redox and capacity degradation mechanism of carbon-coated LMTO during (dis)charge processes are elucidated by combining in situ X-ray diffraction, X-ray absorption near-edge spectroscopy, differential electrochemical mass spectrometry, transmission electron microscopy, and electrochemical analyses. It is concluded that the redox reaction of Mn2+/Mn4+ is quite stable, while the severe degradation is mainly caused by the O2-/O2n- redox process. Moreover, we clearly clarify how the cationic-anionic interplay governs sluggish kinetics, large polarization, and capacity fading in LMTO, and reveal for the first time that a certain amount of carbon coating is capable of suppressing the irreversible lattice oxygen loss and results in an encouraging cycling performance. In summary, we elucidate the degradation of cationic-anionic redox processes in cation-disordered cathode materials and propose strategies for adjusting the electronic/ionic conductivity of the electrodes to modulate the oxygen redox reactions, setting a new direction for the design of better cation-disordered oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA