Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(9): 1036, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29449628

RESUMO

In the version of this article initially published, the institution name for affiliation 3 (Maryland Anderson Cancer Center) was incorrect. The correct institution is MD Anderson Cancer Center. The error has been corrected in the HTML and PDF versions of the article.

3.
Nat Immunol ; 18(7): 800-812, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504697

RESUMO

An imbalance in the lineages of immunosuppressive regulatory T cells (Treg cells) and the inflammatory TH17 subset of helper T cells leads to the development of autoimmune and/or inflammatory disease. Here we found that TAZ, a coactivator of TEAD transcription factors of Hippo signaling, was expressed under TH17 cell-inducing conditions and was required for TH17 differentiation and TH17 cell-mediated inflammatory diseases. TAZ was a critical co-activator of the TH17-defining transcription factor RORγt. In addition, TAZ attenuated Treg cell development by decreasing acetylation of the Treg cell master regulator Foxp3 mediated by the histone acetyltransferase Tip60, which targeted Foxp3 for proteasomal degradation. In contrast, under Treg cell-skewing conditions, TEAD1 expression and sequestration of TAZ from the transcription factors RORγt and Foxp3 promoted Treg cell differentiation. Furthermore, deficiency in TAZ or overexpression of TEAD1 induced Treg cell differentiation, whereas expression of a transgene encoding TAZ or activation of TAZ directed TH17 cell differentiation. Our results demonstrate a pivotal role for TAZ in regulating the differentiation of Treg cells and TH17 cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Diferenciação Celular/imunologia , Colite/imunologia , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Artrite Reumatoide/imunologia , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Immunoblotting , Lisina Acetiltransferase 5 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Síndrome de Sjogren/imunologia , Proteínas Smad/imunologia , Proteínas Smad/metabolismo , Fatores de Transcrição de Domínio TEA , Transativadores/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
4.
Plant J ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815085

RESUMO

Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.

5.
Appl Environ Microbiol ; : e0088824, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940565

RESUMO

Although functional studies on carbohydrate-binding module (CBM) have been carried out extensively, the role of tandem CBMs in the enzyme containing multiple catalytic domains (CDs) is unclear. Here, we identified a multidomain enzyme (Lc25986) with a novel modular structure from lignocellulolytic bacterial consortium. It consists of a mannanase domain, two CBM65 domains (LcCBM65-1/LcCBM65-2), and an esterase domain. To investigate CBM function and domain interactions, full-length Lc25986 and its variants were constructed and used for enzymatic activity, binding, and bioinformatic analyses. The results showed that LcCBM65-1 and LcCBM65-2 both bind mannan and xyloglucan but not cellulose or ß-1,3-1,4-glucan, which differs from the ligand specificity of reported CBM65s. Compared to LcCBM65-2, LcCBM65-1 showed a stronger ligand affinity and a preference for acetylation sites. Both CBM65s stimulated the enzymatic activities of their respective neighboring CDs against acetylated mannan, but did not contribute to the activities of the distal CDs. The time course of mannan hydrolysis indicated that the full-length Lc25986 was more effective in the complete degradation of mixed acetyl/non-acetyl substrates than the mixture of single-CD mutants. When acting on complex substrates, LcCBM65-1 not only improved the enzymatic activity of the mannanase domain, but also directed the esterase domain to the acetylated polysaccharides. LcCBM65-2 adopted a low affinity to reduce interference with the catalysis of the mannanase domain. These results demonstrate the importance of CBMs for the synergism between the two CDs of a multidomain enzyme and suggest that they contribute to the adequate degradation of complex substrates such as plant cell walls. IMPORTANCE: Lignocellulolytic enzymes, particularly those of bacterial origin, often harbor multiple carbohydrate-binding modules (CBMs). However, the function of CBM multivalency remains poorly understood. This is especially true for enzymes that contain more than one catalytic domain (CD), as the interactions between CDs, CBMs, and CDs and CBMs can be complex. Our research demonstrates that homogeneous CBMs can have distinct functions in a multimodular enzyme. The tandem CBMs coordinate the CDs in catalytic conflict through their differences in binding affinity, ligand preference, and arrangement within the full-length enzyme. Additionally, although the synergism between mannanase and esterase is widely acknowledged, our study highlights the benefits of integrating the two enzymes into a single entity for the degradation of complex substrates. In summary, these findings enhance our understanding of the intra-synergism of a multimodular enzyme and emphasize the significance of multiple CBMs in this context.

6.
J Med Virol ; 96(4): e29577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572977

RESUMO

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Leucócitos Mononucleares , NF-kappa B , SARS-CoV-2 , Vacinas de Produtos Inativados , Imunidade , Análise de Sequência de RNA , Anticorpos Antivirais
7.
Artigo em Inglês | MEDLINE | ID: mdl-38824049

RESUMO

OBJECTIVES: The study was designed to identify the potential peripheral processes of circulating exosome in response to Tai Chi (TC) exercise and the possibility of its loaded cargos in mediating the effects of TC training on cognitive function among older adults with amnestic mild cognitive impairment (aMCI). DESIGN, SETTING, AND PARTICIPANTS: This was a multicenter randomized controlled trial. One hundred community-dwelling old adults with aMCI were randomly assigned (1:1) to experimental (n = 50) and control groups (n = 50). INTERVENTION: The experimental group participated in TC exercise 5 times/week, with each session lasting 60 minutes for 12 weeks. Both experimental and control groups received health education every 4 weeks. MEASUREMENTS: The primary outcome was global cognitive function. Neurocognitive assessments, MRI examination, and large-scale proteomics analysis of peripheric exosome were conducted at baseline and after 12-week training. Outcome assessors and statisticians were blinded to group allocation. RESULTS: A total of 96 participants (96%) completed all outcome measurements. TC training improved global cognitive function (adjusted mean difference [MD] = 1.9, 95%CI 0.93-2.87, p <0.001) and memory (adjusted MD = 6.42, 95%CI 2.09-10.74, p = 0.004), increased right hippocampus volume (adjusted MD = 88.52, 95%CI 13.63-163.4, p = 0.021), and enhanced rest state functional connectivity (rsFC) between hippocampus and cuneus, which mediated the group effect on global cognitive function (bootstrapping CIs: [0.0208, 1.2826], [0.0689, 1.2211]) and verbal delay recall (bootstrapping CI: [0.0002, 0.6277]). Simultaneously, 24 differentially expressed exosomal proteins were detected in tandem mass tag-labelling proteomic analysis. Of which, the candidate protein low-density lipoprotein receptor-related protein 1 (LRP1) was further confirmed by parallel reaction monitoring and ELISA. Moreover, the up-regulated LRP1 was both positively associated with verbal delay recall and rsFC (left hippocampus-right cuneus). CONCLUSION: TC promotes LRP1 release via exosome, which was associated with enhanced memory function and hippocampus plasticity in aMCI patients. Our findings provided an insight into potential therapeutic neurobiological targets focusing on peripheric exosome in respond to TC exercise.

8.
BMC Genomics ; 24(1): 668, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932701

RESUMO

BACKGROUND: The Gibberellic Acid-Stimulated Arabidopsis (GASA) gene family is widely involved in the regulation of plant growth, development, and stress response. However, information on the GASA gene family has not been reported in Chinese cabbage (Brassica rapa L. ssp. pekinensis). RESULTS: Here, we conducted genome-wide identification and analysis of the GASA genes in Chinese cabbage. In total, 15 GASA genes were identified in the Chinese cabbage genome, and the physicochemical property, subcellular location, and tertiary structure of the corresponding GASA proteins were elucidated. Phylogenetic analysis, conserved motif, and gene structure showed that the GASA proteins were divided into three well-conserved subfamilies. Synteny analysis proposed that the expansion of the GASA genes was influenced mainly by whole-genome duplication (WGD) and transposed duplication (TRD) and that duplication gene pairs were under negative selection. Cis-acting elements of the GASA promoters were involved in plant development, hormonal and stress responses. Expression profile analysis showed that the GASA genes were widely expressed in different tissues of Chinese cabbage, but their expression patterns appeared to diverse. The qRT-PCR analysis of nine GASA genes confirmed that they responded to salt stress, heat stress, and hormonal triggers. CONCLUSIONS: Overall, this study provides a theoretical basis for further exploring the important role of the GASA gene family in the functional genome of Chinese cabbage.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Arabidopsis/genética , Genoma de Planta , Filogenia , Perfilação da Expressão Gênica , Brassica/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
9.
Angew Chem Int Ed Engl ; 62(3): e202213810, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36411245

RESUMO

Herein, bioinspired total syntheses of A201A, A201D, and A201E based on a previously reported biosynthetic pathway are presented. The challenging 1,2-cis-furanoside, a core structure of the A201 family, was obtained by remote 2-quinolinecarbonyl-assisted glycosylation. We accomplished the total synthesis of A201A and A201E based on the critical 1,2-cis-furanoside moiety through late-stage glycosylation without any interference from basic dimethyl adenosine. We also confirmed the absolute configuration of A201E by total synthesis. This modular synthesis strategy enables efficient preparation of A201 family antibiotics, allowing the study of their structure-activity relationships and mode of action. This study satisfies the increasing demand for developing novel antibiotics inspired by the A201 family.


Assuntos
Antibacterianos , Nucleosídeos , Aminoglicosídeos/química , Glicosilação
10.
Aging Clin Exp Res ; 34(7): 1471-1484, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35025094

RESUMO

BACKGROUND: Accumulated evidence has proved that both neuroinflammation and neuroprotection existing at the stage of mild cognitive impairment (MCI) may mediate its progression, which can conversely be modulated by physical activity (PA). However, further research is needed to clarify which factors are involved in that process. OBJECTIVES: To identify the impact of PA on inflammatory cytokines and neuroprotective factors in individuals with MCI. METHODS: Four databases [PubMed, Cochrane Library, Cochrane Library (Trials), Embase and Web of Science Core Collection] were searched from their inception to October 2021 for randomized-controlled trials (RCTs) assessing the biochemical effect of PA on biomarkers in participants with MCI. Pooled effect size was calculated by the standardized mean difference (SMD). RESULTS: A total of 13 RCTs involving 514 participants by reporting 8 inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, -6, -8, -10, -15, C-reactive protein (CRP) and interferon-γ (IFN-γ) and 5 neuroprotective factors (brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1), vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), irisin] were included. The meta-analysis showed that PA had positive effects on decreasing TNF-α (SMD = - 0.32, 95% CI - 0.58 to 0.07, p = 0.01; I2 = 32%) and CRP (SMD = - 0.68, 95% CI - 1.05 to 0.32, p = 0.0002; I2 = 18%), while significantly improving BDNF (SMD = 0.32, 95% CI 0.09-0.56, p = 0.007; I2 = 42%) and IGF-1 (SMD = 0.42, 95% CI 0.03-0.81, p = 0.03; I2 = 0%). CONCLUSION: PA had a certain effect on inhibiting inflammatory cytokines but promoting neuroprotective factors in individuals with MCI which may provide a possible explanation for the potential molecular mechanism of PA on cognitive improvement.


Assuntos
Disfunção Cognitiva , Citocinas , Fator Neurotrófico Derivado do Encéfalo , Proteína C-Reativa , Exercício Físico , Humanos , Fator de Crescimento Insulin-Like I , Ensaios Clínicos Controlados Aleatórios como Assunto , Fator de Necrose Tumoral alfa/metabolismo
11.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500553

RESUMO

This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics, we classify these difluoroalkylation reactions into three types.


Assuntos
Cobre , Ciclização , Catálise , Estrutura Molecular
12.
Angew Chem Int Ed Engl ; 61(31): e202204907, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35606651

RESUMO

Miharamycins belong to a class of peptidyl nucleoside antibiotics with a unique nine-carbon pyranosyl amino acid core and a rare 2-aminopurine moiety. Herein, we report the de novo total synthesis of miharamycin B and its biosynthetic precursor from 3-bromofuran and Garner's aldehyde through a modified Achmatowicz reaction. Many challenges were resolved toward the de novo synthesis of miharamycin B, including the introduction of a dense array of functional groups, the stereoselective construction of consecutive stereocenters, dealing with the variability of the anomeric positions, and promoting site-selectivity in the cyclization to form the tetrahydrofuran ring. This de novo synthesis strategy enables efficient preparation of 3'-substituted saccharides, allowing the study of their structure-activity relationships and mode of action, and meets the growing demand for the development of novel antibiotics inspired by miharamycin natural products.


Assuntos
Antibacterianos , Nucleosídeos , Aminoácidos/química , Antibacterianos/química , Nucleosídeos/química , Estereoisomerismo , Relação Estrutura-Atividade
13.
J Cardiovasc Pharmacol ; 77(2): 217-227, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165140

RESUMO

ABSTRACT: Lipid metabolism disorder and inflammatory response are considered to be the major causes of atherosclerogenesis. Astragalin, the most important functional component of flavonoid obtained from persimmon leaves, has the hypolipidemic effects. However, it is unknown, how astragalin protects against atherosclerosis. The aim of this study was to observe the effects of astragalin on cholesterol efflux and inflammatory response and to explore the underlying mechanisms. Our results showed that astragalin upregulated the expression of ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1), promoted cholesterol efflux, and suppressed foam cell formation. Inhibition of the PPARγ/LXRα pathway abrogated the promotive effects of astragalin on both transporter expression and cholesterol efflux. In addition, treatment of astragalin markedly decreased the secretion of inflammatory factors, including interleukin 6, monocyte chemotactic protein 1, tumor necrosis factor α, and interleukin 1ß. Mechanistically, astragalin upregulated ABCA1 and ABCG1 expression, which in turn reduced TLR4 surface levels and inhibited NF-κB nuclear translocation. Consistently, astragalin reduced atherosclerotic plaque area in apoE-/- mice. Taken together, these findings suggest that astragalin protects against atherosclerosis by promoting ABCA1- and ABCG1-mediated cholesterol efflux and inhibiting proinflammatory mediator release.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , Mediadores da Inflamação/metabolismo , Quempferóis/farmacologia , Macrófagos/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Células Espumosas/patologia , Células HEK293 , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Knockout para ApoE , Placa Aterosclerótica , Células THP-1 , Regulação para Cima
14.
Med Sci Monit ; 27: e928813, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33619241

RESUMO

BACKGROUND Aminoacylase 1 (ACY-1) is a cytosolic enzyme that catalyzes amino acid deacylation and has been reported to participate in various human diseases. However, the role and mechanism of ACY-1 in neuroblastoma (NB) are not completely understood. The aim of this study was to elucidate the role of ACY-1 in NB. MATERIAL AND METHODS Overexpression and knockdown of ACY-1 in human NB cells were performed, and the transfection efficiency was assessed through fluorescence microscopy, real-time PCR, and western blotting. The effect of ACY-1 on tumorigenesis and metastasis was determined by cell counting, colony formation, wound healing, flow cytometry, and transwell invasion assays in vitro, and the signaling pathway was examined using western blotting. RESULTS ACY-1 overexpression inhibited proliferation and induced apoptosis in human NB cells. ACY-1 inhibited the colony formation ability, migration, and invasion of SH-SY5Y cell lines. Moreover, the ERK1/2 and TGF-ß1 signaling pathways were more active when ACY-1 was overexpressed in NB cells. However, the knockdown of ACY-1 in SH-SY5Y cell lines showed the opposite effects. CONCLUSIONS ACY-1 regulates the proliferation, migration, and invasion of human NB cells through the ERK1/2 and TGF-ß1 signaling pathways, implying that ACY-1 may serve as a therapeutic target for patients with NB.


Assuntos
Amidoidrolases/metabolismo , Neuroblastoma/metabolismo , Amidoidrolases/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia
15.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 63-71, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33434281

RESUMO

Myristica fragrans is a traditional herbal medicine and has been shown to alleviate the development of atherosclerosis. However, the anti-atherogenic mechanisms of M. fragrans are still to be addressed. In this study, we explored the effect of M. fragrans on lipid metabolism and inflammation and its mechanisms in THP-1-derived macrophages. The quantitative polymerase chain reaction and western blot analysis results showed that M. fragrans promotes cholesterol efflux from THP-1-derived macrophages and reduces intracellular total cholesterol, cholesterol ester, and free cholesterol contents in a dose- and a time-dependent manner. Further study found that liver X receptor alpha (LXRα) antagonist GGPP significantly blocked the upregulation of ABCA1 expression with M. fragrans treatment. In addition, chromatin immunoprecipitation assay confirmed that GATA binding protein 3 (GATA3) can bind to the LXRα promoter, and inhibition of GATA3 led to the downregulation of LXRα and ATP-binding cassette subfamily A member 1 expression. Furthermore, M. fragrans reduced lipid accumulation, followed by decreasing tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß and increasing IL-10 produced by THP-1-derived macrophages. Therefore, M. fragrans is identified as a valuable therapeutic medicine for atherosclerotic cardiovascular disease.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transporte Biológico/efeitos dos fármacos , Ésteres do Colesterol/metabolismo , Citocinas/metabolismo , Fator de Transcrição GATA3/antagonistas & inibidores , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Receptores X do Fígado/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Myristica , Regiões Promotoras Genéticas , Células THP-1/citologia , Regulação para Cima
16.
J Lipid Res ; 60(12): 2020-2033, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662443

RESUMO

CXC chemokine ligand 12 (CXCL12) is a member of the CXC chemokine family and mainly acts on cell chemotaxis. CXCL12 also elicits a proatherogenic role, but the molecular mechanisms have not been fully defined yet. We aimed to reveal if and how CXCL12 promoted atherosclerosis via regulating lipid metabolism. In vitro, our data showed that CXCL12 could reduce ABCA1 expression, and it mediated cholesterol efflux from THP-1-derived macrophages to apoA-I. Data from the luciferase reporter gene and chromatin immunoprecipitation assays revealed that transcription factor 21 (TCF21) stimulated the transcription of ABCA1 via binding to its promoter region, which was repressed by CXCL12. We found that CXCL12 increased the levels of phosphorylated glycogen synthase kinase 3ß (GSK3ß) and the phosphorylation of ß-catenin at the Thr120 position. Inactivation of GSK3ß or ß-catenin increased the expression of TCF21 and ABCA1. Further, knockdown or inhibition of CXC chemokine receptor 4 (CXCR4) blocked the effects of CXCL12 on TCF21 and ABCA1 expression and the phosphorylation of GSK3ß and ß-catenin. In vivo, the overexpression of CXCL12 in Apoe-/- mice via lentivirus enlarged the atherosclerotic lesion area and increased macrophage infiltration in atherosclerotic plaques. We further found that the overexpression of CXCL12 reduced the efficiency of reverse cholesterol transport and plasma HDL-C levels, decreased ABCA1 expression in the aorta and mouse peritoneal macrophages (MPMs), and suppressed cholesterol efflux from MPMs to apoA-I in Apoe-/- mice. Collectively, these findings suggest that CXCL12 interacts with CXCR4 and then activates the GSK-3ß/ß-cateninT120/TCF21 signaling pathway to inhibit ABCA1-dependent cholesterol efflux from macrophages and aggravate atherosclerosis. Targeting CXCL12 may be a novel and promising strategy for the prevention and treatment of atherosclerotic cardiovascular diseases.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Aterosclerose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quimiocina CXCL12/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Receptores CXCR4/metabolismo , beta Catenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/metabolismo , Regulação para Baixo , Células HEK293 , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Biochem Biophys Res Commun ; 500(2): 318-324, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653102

RESUMO

Atherosclerosis is a dyslipidemia disease characterized by foam cell formation driven by the accumulation of lipids. Visceral adipose tissue-derived serine protease inhibitor (vaspin) is known to suppress the development of atherosclerosis via its anti-inflammatory properties, but it is not yet known whether vaspin affects cholesterol efflux in THP-1 macrophage-derived foam cells. Here, we investigated the effects of vaspin on ABCA1 expression and cholesterol efflux, and further explored the underlying mechanism. We found that vaspin decreased miR-33a levels, which in turn increased ABCA1 expression and cholesteorl efflux. We also found that inhibition of NF-κB reduced miR-33a expression and vaspin suppressed LPS-mediated NF-κB phosphorylation. Our findings suggest that vaspin is not only a regular of inflammasion but also a promoter of cholesterol efflux.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Gordura Intra-Abdominal/metabolismo , Macrófagos/citologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Serpinas/metabolismo , Regulação para Cima , Transportador 1 de Cassete de Ligação de ATP/genética , Sequência de Bases , Linhagem Celular , Regulação para Baixo , Células Espumosas/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , MicroRNAs/genética , Transdução de Sinais
18.
Exp Ther Med ; 27(3): 95, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38313582

RESUMO

Circular RNAs (circRNAs) serve an essential role in the occurrence and development of cholangiocarcinoma, but the expression and function of circRNA in biliary atresia (BA) is not clear. In the present study, circRNA expression profiles were investigated in the liver tissues of patients with BA as well as in the choledochal cyst (CC) tissues of control patients using RNA sequencing. A total of 78 differentially expressed circRNAs (DECs) were identified between the BA and CC tissues. The expression levels of eight circRNAs (hsa_circ_0006137, hsa_circ_0079422, hsa_circ_0007375, hsa_circ_0005597, hsa_circ_0006961, hsa_circ_0081171, hsa_circ_0084665 and hsa_circ_0075828) in the liver tissues of the BA group and control group were measured using reverse transcription-quantitative polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the identified DECs are involved in a variety of biological processes, including apoptosis and metabolism. In addition, based on the GO and KEGG pathway enrichment analyses, it was revealed that target genes that can be affected by circRNAs regulatory network were enriched in the TGF-ß signaling pathway, EGFR tyrosine kinase inhibitor resistance pathway and transcription factor regulation pathway as well as other pathways that may be associated with the pathogenesis of BA. The present study revealed that circRNAs are potentially implicated in the pathogenesis of BA and could help to find promising targets and biomarkers for BA.

19.
BMC Med Genomics ; 17(1): 36, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279119

RESUMO

Idiopathic congenital nystagmus (ICN) manifests as involuntary and periodic eye movements. To identify the genetic defect associated with X-linked ICN, Whole Exome Sequencing (WES) was conducted in two affected families. We identified two frameshift mutations in FRMD7, c.1492dupT/p.(Y498Lfs*15) and c.1616delG/p.(R539Kfs*2). Plasmids harboring the mutated genes and qPCR analysis revealed mRNA stability, evading degradation via the NMD pathway, and corroborated truncated protein production via Western-blot analysis. Notably, both truncated proteins were degraded through the proteasomal (ubiquitination) pathway, suggesting potential therapeutic avenues targeting this pathway for similar mutations. Moreover, we conducted a comprehensive analysis, summarizing 140 mutations within the FRMD7 gene. Our findings highlight the FERM and FA structural domains as mutation-prone regions. Interestingly, exons 9 and 12 are the most mutated regions, but 90% (28/31) mutations in exon 9 are missense while 84% (21/25) mutations in exon 12 are frameshift. A predominant occurrence of shift code mutations was observed in exons 11 and 12, possibly associated with the localization of premature termination codons (PTCs), leading to the generation of deleterious truncated proteins. Additionally, our conjecture suggests that the loss of FRMD7 protein function might not solely drive pathology; rather, the emergence of aberrant protein function could be pivotal in nystagmus etiology. We propose a dependence of FRMD7 protein normal function primarily on its anterior domain. Future investigations are warranted to validate this hypothesis.


Assuntos
Mutação da Fase de Leitura , Nistagmo Congênito , Humanos , Nistagmo Congênito/genética , Sequência de Bases , Proteínas de Membrana/genética , Proteínas do Citoesqueleto/genética , Linhagem , Análise Mutacional de DNA , Mutação
20.
Phytomedicine ; 128: 155411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518638

RESUMO

BACKGROUND: Emodin-8-O-ß-D-glucopyranoside (Em8G) is an active ingredient of traditional Chinese medicine Rhei Radix et Rhizoma and Polygonum multiflorum Thunb.. And it caused hepatotoxicity, while the underlying mechanism was not clear yet. PURPOSE: We aimed to explore the detrimental effects of Em8G on the zebrafish liver through the metabolome and transcriptome integrated analysis. STUDY DESIGN AND METHODS: In this study, zebrafish larvae were used in acute toxicity tests to reveal the hepatotoxicity of Em8G. Adult zebrafish were then used to evaluate the gender differences in hepatotoxicity induced by Em8G. Integration of transcriptomic and metabolomic analysis was used further to explore the molecular mechanisms underlying gender differences in hepatotoxicity. RESULTS: Our results showed that under non-lethal concentration exposure conditions, hepatotoxicity was observed in Em8G-treated zebrafish larvae, including changes in liver transmittance, liver area, hepatocyte apoptosis and hepatocyte vacuolation. Male adult zebrafish displayed a higher Em8G-induced hepatotoxicity than female zebrafish, as demonstrated by the higher mortality and histopathological alterations. The results of transcriptomics combined with metabolomics showed that Em8G mainly affected carbohydrate metabolism (such as TCA cycle) in male zebrafish and amino acid metabolism (such as arginine and proline metabolism) in females, suggesting that the difference of energy metabolism disorder may be the potential mechanism of male and female liver toxicity induced by Em8G. CONCLUSIONS: This study provided the direct evidence for the hepatotoxicity of Em8G to zebrafish models in vivo, and brought a new insight into the molecular mechanisms of Em8G hepatotoxicity, which can guide the rational application of this phytotoxin. In addition, our findings revealed gender differences in the hepatotoxicity of Em8G to zebrafish, which is related to energy metabolism and provided a methodological reference for evaluating hepatotoxic drugs with gender differences.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Metabolômica , Peixe-Zebra , Animais , Masculino , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transcriptoma/efeitos dos fármacos , Glucosídeos/toxicidade , Glucosídeos/farmacologia , Fatores Sexuais , Emodina/análogos & derivados , Emodina/toxicidade , Emodina/farmacologia , Larva/efeitos dos fármacos , Antraquinonas/toxicidade , Testes de Toxicidade Aguda , Medicamentos de Ervas Chinesas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA