Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 258: 121802, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38796914

RESUMO

Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.


Assuntos
Água Subterrânea , Metano , Oryza , Oxirredução , Metano/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Anaerobiose , Archaea/genética , Archaea/metabolismo
2.
Water Res ; 239: 120035, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172373

RESUMO

In situ chemical oxidation (ISCO) is widely used as an efficient remediation technology for groundwater pollution. However, quantitative studies of its reactive remediation process under coupled thermal desorption technology are scarce. Based on laboratory experiments and site remediation, the chemical oxidation remediation reaction process was quantified, and the apparent reaction equation of the ISCO process was constructed. And then, a numerical model coupled with Hydraulic-Thermal-Chemical (HTC) fields was built to quantitatively describe the remediation process of an actual contaminated site. The simulation results fit well with the site monitoring data, and the results indicated that thermal desorption strengthens the ISCO remediation effect. In addition, the HTC model is expanded to build a conceptual and numerical model of a coupled remediation system, including heating and remediation wells. The results showed that high-temperature conditions enhance the activity of remediation chemicals and increase the rate of remediation reaction to obtain a better remediation effect. The heating wells increase the regional temperature, accelerating the diffusion of pollutants and remediation chemicals, and promoting adequate contact and reaction. Based on this crucial mechanism, thermal desorption coupled with ISCO technology can significantly improve remediation efficiency, shorten the remediation cycle, and precisely control agent delivery with the help of numerical simulation to avoid secondary contamination.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Oxirredução , Poluição Ambiental , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA