RESUMO
Connexin mutant mice develop cataracts containing calcium precipitates. To test whether pathologic mineralization is a general mechanism contributing to the disease, we characterized the lenses from a nonconnexin mutant mouse cataract model. By cosegregation of the phenotype with a satellite marker and genomic sequencing, we identified the mutant as a 5-bp duplication in the γC-crystallin gene (Crygcdup). Homozygous mice developed severe cataracts early, and heterozygous animals developed small cataracts later in life. Immunoblotting studies showed that the mutant lenses contained decreased levels of crystallins, connexin46, and connexin50 but increased levels of resident proteins of the nucleus, endoplasmic reticulum, and mitochondria. The reductions in fiber cell connexins were associated with a scarcity of gap junction punctae as detected by immunofluorescence and significant reductions in gap junction-mediated coupling between fiber cells in Crygcdup lenses. Particles that stained with the calcium deposit dye, Alizarin red, were abundant in the insoluble fraction from homozygous lenses but nearly absent in wild-type and heterozygous lens preparations. Whole-mount homozygous lenses were stained with Alizarin red in the cataract region. Mineralized material with a regional distribution similar to the cataract was detected in homozygous lenses (but not wild-type lenses) by micro-computed tomography. Attenuated total internal reflection Fourier-transform infrared microspectroscopy identified the mineral as apatite. These results are consistent with previous findings that loss of lens fiber cell gap junctional coupling leads to the formation of calcium precipitates. They also support the hypothesis that pathologic mineralization contributes to the formation of cataracts of different etiologies.
Assuntos
Catarata , Cristalinas , Minerais , Animais , Camundongos , Cálcio/metabolismo , Catarata/genética , Catarata/fisiopatologia , Conexinas/genética , Conexinas/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Cristalino/patologia , Minerais/metabolismo , Microtomografia por Raio-X , Modelos Animais de DoençasRESUMO
Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 µM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from â¼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was â¼2-fold higher at the junction between the differentiating and mature fiber cells and â¼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.
Assuntos
Permeabilidade da Membrana Celular , Junções Comunicantes , Peróxido de Hidrogênio , Pressão Hidrostática , Cristalino , Camundongos Endogâmicos C57BL , Animais , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Cristalino/metabolismo , Cristalino/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Catarata/metabolismo , Estresse Oxidativo , Oxidantes/farmacologia , Oxidantes/toxicidadeRESUMO
Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação/fisiologia , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cães , Furanos/farmacologia , Expressão Gênica , Cobaias , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Moxifloxacina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Potássio/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Sódio/metabolismo , Sulfonamidas/farmacologia , Transgenes , Xenopus laevisRESUMO
Purpose: Glutathione peroxidase 1 (GPX1) and catalase are expressed in the lens epithelial cells and cortical fiber cells, where they detoxify H2O2 to reduce oxidative stress, which is a major cause for cataractogenesis. We sought to find out, between these two enzymes, which is critical for transparency and homeostasis in the aging lens by investigating alterations in the lens's refractive property, transparency, and gap junction coupling (GJC) resistance. Methods: Wild-type (C57BL/6J), GPX1 knockout (GPX1-/-) and catalase knockout (CAT-/-) mice were used. Lens transparency was quantified using dark-field images and ImageJ software. For optical aberration evaluation, each lens was placed over a copper electron microscopy specimen grid; the grid image was captured through the lens using a digital camera attached to a dark-field binocular microscope. Optical aberrations were assessed by the quality of the magnified gridlines. Microelectrode-based intact lens intracellular impedance was measured to determine GJC resistance. Results: In contrast to wild-type (WT) and CAT-/- lenses, GPX1-/- lenses developed accelerated age-related cataracts. While two-month-old lenses were normal, at nine months of age, GPX1-/- mice started to show the development of abnormal optical distortion aberrations and loss of transparency. At 12 months of age, GPX1-/- lenses developed significant opacity and abnormal optical distortion aberrations compared to CAT-/- and WT (p<0.001); these aberrations gradually increased with age and matured into cataracts by 24 months of age. There was also a significant increase (p<0.001) in GJC resistance in the differentiating and mature fiber cells of GPX1-/- lenses at 12 months of age compared to that in similar areas of age-matched CAT-/- and WT lenses. Conclusions: Changes in the refractive and physiological properties of the lens occurred before cataract formation in GPX1-/- lenses but not in CAT-/- lenses. GPX1 is more critical than catalase for lens transparency, optical quality, and homeostasis in the aging lens under normal physiological conditions. GPX1 could be a promising therapeutic target for developing potential strategies to reduce adverse oxidative stress and delay/treat/prevent age-related cataracts.
Assuntos
Catarata , Cristalino , Envelhecimento , Animais , Catalase/genética , Catarata/genética , Glutationa Peroxidase , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glutationa Peroxidase GPX1RESUMO
The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor potential vanilloid 1 (TRPV1) ion channels. Here, we compare responses in lenses and cultured lens epithelium obtained from TRPV1-/- and wild type (WT) mice. Hydrostatic pressure (HP) in lens surface cells was determined using a manometer-coupled microelectrode approach. The TRPV1 agonist capsaicin (100 nM) caused a transient HP increase in WT lenses that peaked after â¼30 min and then returned toward baseline. Capsaicin did not cause a detectable change of HP in TRPV1-/- lenses. The NKCC inhibitor bumetanide prevented the HP response to capsaicin in WT lenses. Potassium transport was examined by measuring Rb+ uptake. Capsaicin increased Rb+ uptake in cultured WT lens epithelial cells but not in TRPV1-/- cells. Bumetanide, A889425, and the Akt inhibitor Akti prevented the Rb+ uptake response to capsaicin. The bumetanide-sensitive (NKCC-dependent) component of Rb+ uptake more than doubled in response to capsaicin. Capsaicin also elicited rapid (<2 min) NKCC1 phosphorylation in WT but not TRPV1-/- cells. HP recovery was shown to be absent in TRPV1-/- lenses exposed to hyperosmotic solution. Bumetanide and Akti prevented HP recovery in WT lenses exposed to hyperosmotic solution. Taken together, responses to capsaicin and hyperosmotic solution point to a functional role for TRPV1 channels in mouse lens. Lack of NKCC1 phosphorylation and Rb+ uptake responses in TRPV1-/- mouse epithelium reinforces the notion that a hyperosmotic challenge causes TRPV1-dependent NKCC1 activation. The results are consistent with a role for the TRPV1-activated signaling pathway leading to NKCC1 stimulation in lens osmotic homeostasis.
Assuntos
Cristalino/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Canais de Cátion TRPV/genética , Animais , Bumetanida/farmacologia , Capsaicina/farmacologia , Linhagem Celular , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Pressão Hidrostática/efeitos adversos , Cristalino/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , SuínosRESUMO
Gap junction-mediated intercellular communication facilitates the circulation of ions, small molecules, and metabolites in the avascular eye lens. Mutants of the lens fiber cell gap junction proteins, connexin46 (Cx46) and connexin50 (Cx50), cause cataracts in people and in mice. Studies in mouse models have begun to elucidate the mechanisms by which these mutants lead to cataracts. The expression of the dominant mutants causes severe decreases in connexin levels, reducing the gap junctional communication between lens fiber cells and compromising the lens circulation. The impairment of the lens circulation results in several changes, including the accumulation of Ca2+ in central lens regions, leading to the formation of precipitates that stain with Alizarin red. The cataract morphology and the distribution of Alizarin red-stained material are similar, suggesting that the cataracts result from biomineralization within the organ. In this review, we suggest that this may be a general process for the formation of cataracts of different etiologies.
Assuntos
Biomineralização , Catarata/genética , Conexinas/genética , Cristalino/metabolismo , Cristalino/patologia , Mutação/genética , Animais , Catarata/patologia , HumanosRESUMO
The lens is an avascular organ whose function and survival depend on an internal circulation system. Cx46fs380 mice model a human autosomal dominant cataract caused by a mutant lens connexin. In these mice, fiber cell connexin levels and gap junction coupling are severely decreased. The present studies were conducted to examine components of the lens circulation system that might be altered and contribute to the pathogenesis of cataracts. Lenses from wild-type mice and Cx46fs380 heterozygotes and homozygotes were studied at 2 months of age. Cx46fs380-expressing lens fiber cells were depolarized. Cx46fs380 lenses had increased intracellular hydrostatic pressure and concentrations of Na+ and Ca2+. The activity of epithelial Na+-K+-ATPase was decreased in Cx46fs380 lenses. All of these changes were more severe in homozygous than in heterozygous Cx46fs380 lenses. Cx46fs380 cataracts were stained by Alizarin red, a dye used to detect insoluble Ca2+. These data suggest that the lens internal circulation was disrupted by expression of Cx46fs380, leading to several consequences including accumulation of Ca2+ to levels so high that precipitates formed. Similar Ca2+-containing precipitates may contribute to cataract formation due to other genetic or acquired etiologies.
Assuntos
Cálcio/metabolismo , Catarata/metabolismo , Conexinas/metabolismo , Cristalino/metabolismo , Animais , Catarata/genética , Catarata/patologia , Conexinas/genética , Cristalização , Modelos Animais de Doenças , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Pressão Hidrostática , Pressão Intraocular , Cristalino/patologia , Potenciais da Membrana , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Fenótipo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismoRESUMO
Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only â¼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca(2+) elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, ß-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca(2+) elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.
Assuntos
Cálcio/metabolismo , Calpaína , Catarata , Proteínas do Olho , Cristalino , Ubiquitina , Substituição de Aminoácidos , Animais , Calpaína/genética , Calpaína/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Ativação Enzimática , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/genética , Ubiquitina/metabolismoRESUMO
Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.
RESUMO
Gating of ion channels by ligands is fundamental to cellular function, and ATP serves as both an energy source and a signaling molecule that modulates ion channel and transporter functions. The slowly activating K(+) channel I(Ks) in cardiac myocytes is formed by KCNQ1 and KCNE1 subunits that conduct K(+) to repolarize the action potential. Here we show that intracellular ATP activates heterologously coexpressed KCNQ1 and KCNE1 as well as I(Ks) in cardiac myocytes by directly binding to the C terminus of KCNQ1 to allow the pore to open. The channel is most sensitive to ATP near its physiological concentration, and lowering ATP concentration in cardiac myocytes results in I(Ks) reduction and action potential prolongation. Multiple mutations that suppress I(Ks) by decreasing the ATP sensitivity of the channel are associated with the long QT (interval between the Q and T waves in electrocardiogram) syndrome that predisposes afflicted individuals to cardiac arrhythmia and sudden death. A cluster of basic and aromatic residues that may form a unique ATP binding site are identified; ATP activation of the wild-type channel and the effects of the mutations on ATP sensitivity are consistent with an allosteric mechanism. These results demonstrate the activation of an ion channel by intracellular ATP binding, and ATP-dependent gating allows I(Ks) to couple myocyte energy state to its electrophysiology in physiologic and pathologic conditions.
Assuntos
Trifosfato de Adenosina/metabolismo , Arritmias Cardíacas/genética , Frequência Cardíaca/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Western Blotting , Fluorometria , Humanos , Mutagênese , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Análise de Sequência de DNA , Xenopus laevisRESUMO
In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from â¼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity.
Assuntos
Retroalimentação Fisiológica/fisiologia , Cristalino/fisiologia , Animais , Retroalimentação Fisiológica/efeitos dos fármacos , Pressão Hidrostática , Cristalino/citologia , Cristalino/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microeletrodos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Técnicas de Cultura de Tecidos , Tonometria OcularRESUMO
The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1(-/-);CP49(-/-) double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance.
Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Homeostase/fisiologia , Cristalino/citologia , Cristalino/metabolismo , Animais , Diferenciação Celular , Citoesqueleto/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Camundongos TransgênicosRESUMO
Transmural heterogeneities in Na/K pump current (IP), transient outward K(+)-current (Ito), and Ca(2+)-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33-50% of IP, 57-65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.
Assuntos
Angiotensina II/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Função Ventricular , Potenciais de Ação , Animais , Cães , Endocárdio/citologia , Endocárdio/metabolismo , Endocárdio/fisiologia , Ventrículos do Coração/citologia , Transporte de Íons , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Pericárdio/citologia , Pericárdio/metabolismo , Pericárdio/fisiologia , Canais de Potássio/metabolismo , Sarcolema/metabolismoRESUMO
The cardiac KCNQ1+KCNE1 (I Ks ) channel regulates heart rhythm in both normal and stress conditions. Under stress, the ß-adrenergic stimulation elevates the intracellular cAMP level, leading to KCNQ1 phosphorylation by protein kinase A and increased I Ks , which shortens action potentials to adapt to accelerated heart rate. An impaired response to the ß-adrenergic stimulation due to KCNQ1 mutations is associated with the occurrence of a lethal congenital long QT syndrome (type 1, also known as LQT1). However, the underlying mechanism of ß-adrenergic stimulation of I Ks remains unclear, impeding the development of new therapeutics. Here we find that the unique properties of KCNQ1 channel gating with two distinct open states are key to this mechanism. KCNQ1's fully activated open (AO) state is more sensitive to cAMP than its' intermediate open (IO) state. By enhancing the AO state occupancy, the small molecules ML277 and C28 are found to effectively enhance the cAMP sensitivity of the KCNQ1 channel, independent of KCNE1 association. This finding of enhancing AO state occupancy leads to a potential novel strategy to rescue the response of I Ks to ß-adrenergic stimulation in LQT1 mutants. The success of this approach is demonstrated in cardiac myocytes and also in a high-risk LQT1 mutation. In conclusion the present study not only uncovers the key role of the AO state in I Ks channel phosphorylation, but also provides a new target for anti-arrhythmic strategy. Significance statement: The increase of I Ks potassium currents with adrenalin stimulation is important for "fight-or-flight" responses. Mutations of the IKs channel reducing adrenalin responses are associated with more lethal form of the type-1 long-QT syndrome (LQT). The alpha subunit of the IKs channel, KCNQ1 opens in two distinct open states, the intermediate-open (IO) and activated-open (AO) states, following a two-step voltage sensing domain (VSD) activation process. We found that the AO state, but not the IO state, is responsible for the adrenalin response. Modulators that specifically enhance the AO state occupancy can enhance adrenalin responses of the WT and LQT-associated mutant channels. These results reveal a mechanism of state dependent modulation of ion channels and provide an anti-arrhythmic strategy.
RESUMO
The cardiac KCNQ1 + KCNE1 (IKs) channel regulates heart rhythm under both normal and stress conditions. Under stress, the ß-adrenergic stimulation elevates the intracellular cyclic adenosine monophosphate (cAMP) level, leading to KCNQ1 phosphorylation by protein kinase A and increased IKs, which shortens action potentials to adapt to accelerated heart rate. An impaired response to the ß-adrenergic stimulation due to KCNQ1 mutations is associated with the occurrence of a lethal congenital long QT syndrome (type 1, also known as LQT1). However, the underlying mechanism of ß-adrenergic stimulation of IKs remains unclear, impeding the development of new therapeutics. Here, we find that the unique properties of KCNQ1 channel gating with two distinct open states are key to this mechanism. KCNQ1's fully activated open (AO) state is more sensitive to cAMP than its intermediate open state. By enhancing the AO state occupancy, the small molecules ML277 and C28 are found to effectively enhance the cAMP sensitivity of the KCNQ1 channel, independent of KCNE1 association. This finding of enhancing AO state occupancy leads to a potential novel strategy to rescue the response of IKs to ß-adrenergic stimulation in LQT1 mutants. The success of this approach is demonstrated in cardiac myocytes and also in a high-risk LQT1 mutation. In conclusion, the present study not only uncovers the key role of the AO state in IKs channel phosphorylation, but also provides a target for antiarrhythmic strategy.
RESUMO
The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 â¼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 â¼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.
Assuntos
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacologia , Ipeca/farmacologia , Cardiotoxicidade , Antivirais/toxicidadeRESUMO
The avascular eye lens generates its own microcirculation that is required for maintaining lifelong lens transparency. The microcirculation relies on sodium ion flux, an extensive network of gap junction (GJ) plaques between lens fiber cells and transmembrane water channels. Disruption of connexin proteins, the building blocks of GJs, or aquaporins, which make up water and adhesion channels, lead to lens opacification or cataracts. Recent studies have revealed that disruption of Eph-ephrin signaling, in particular the receptor EphA2 and the ligand ephrin-A5, in humans and mice lead to congenital and age-related cataracts. We investigated whether changes in lens transparency in EphA2 or ephrin-A5 knockout (-/-) mice is related to changes in GJ coupling and lens fluid and ion homeostasis. Immunostaining revealed changes in connexin 50 (Cx50) subcellular localization in EphA2 -/- peripheral lens fibers and alteration in aquaporin 0 (Aqp0) staining patterns in ephrin-A5 -/- and EphA2 -/- inner mature fiber cells. Surprisingly, there was no obvious change in GJ coupling in knockout lenses. However, there were changes in fiber cell membrane conductance and intracellular voltage in knockout lenses from 3-month-old mice. These knockout lenses displayed decreased conductance of mature fiber membranes and were hyperpolarized compared to control lenses. This is the first demonstration that the membrane conductance of lens fibers can be regulated. Together these data suggest that EphA2 may be needed for normal Cx50 localization to the cell membrane and that conductance of lens fiber cells requires normal Eph-ephrin signaling and water channel localization.
RESUMO
S100A4, a member of the S100 family of multifunctional calcium-binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in differentiating fiber cells of the ocular lens and that S100A4 (-/-) knockout mice develop late-onset cortical cataracts. Transcriptome profiling of lenses from S100A4 (-/-) mice revealed a robust increase in the expression of multiple photoreceptor- and Müller glia-specific genes, as well as the olfactory sensory neuron-specific gene, S100A5. This aberrant transcriptional profile is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of differentially expressed genes in S100A4 (-/-) lenses identified Crx and Nrl transcription factors as the most significant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high-density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this finding, we further documented that S100A4 (-/-) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, our findings suggest that S100A4 suppresses the expression of retinal genes during lens differentiation plausibly via a mechanism involving changes in histone methylation.
Assuntos
Catarata/patologia , Diferenciação Celular , Cristalino/metabolismo , Retina/patologia , Proteína A4 de Ligação a Cálcio da Família S100/deficiência , Citoesqueleto de Actina/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Catarata/genética , Linhagem da Célula/genética , Células Ependimogliais/metabolismo , Junções Comunicantes/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Neurônios Receptores Olfatórios/metabolismo , Especificidade de Órgãos , Células Fotorreceptoras de Vertebrados/metabolismo , Análise de Componente Principal , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Transcriptoma/genética , Regulação para Cima/genéticaRESUMO
We previously demonstrated a transmural gradient in Na/K pump current (I (P)) and [Na(+)]( i ), with the highest maximum I (P) and lowest [Na(+)]( i ) in epicardium. The present study examines the relationship between the transmural gradient in I (P) and Na/Ca exchange (NCX). Myocytes were isolated from canine left ventricle. Whole-cell patch clamp was used to measure current generated by NCX (I (NCX)) and inward background calcium current (I (ibCa)), defined as inward current through Ca(2+) channels less outward current through Ca(2+)-ATPase. When resting myocytes from endocardium (Endo), midmyocardium (Mid) or epicardium (Epi) were studied in the same conditions, I (NCX) was the same and I (ibCa) was zero. Moreover, Western blots were consistent with NCX protein being uniform across the wall. However, the gradient in [Na(+)]( i ), with I (ibCa) = 0, should create a gradient in [Ca(2+)]( i ). To test this hypothesis, we measured resting [Ca(2+)]( i ) using two methods, based on either transport or the Ca(2+)-sensitive dye Fura2. Both methods demonstrated a significant transmural gradient in resting [Ca(2+)]( i ), with Endo > Mid > Epi. This gradient was eliminated by exposing Epi to sufficient ouabain to partially inhibit Na/K pumps, thus increasing [Na(+)]( i ) to values similar to those in Endo. These data support the existence of a transmural gradient for Ca(2+) removal by NCX. This gradient is not due to differences in expression of NCX; rather, it is generated by a transmural gradient in [Na(+)]( i ), which is due to a transmural gradient in plasma membrane expression of the Na/K pump.
Assuntos
Células Musculares/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Células Cultivadas , Cães , Ventrículos do Coração/metabolismo , Modelos Biológicos , Técnicas de Patch-ClampRESUMO
Purpose: The lens uses feedback to maintain zero pressure in its surface cells. Positive pressures are detected by transient receptor potential vanilloid (TRPV4), which initiates a cascade that reduces surface cell osmolarity. The first step is opening of gap junction hemichannels. One purpose of the current study was to identify the connexin(s) in the hemichannels. Negative pressures are detected by TRPV1, which initiates a cascade that increases surface osmolarity. The increase in osmolarity was initially reported to be through inhibition of Na/K ATPase activity, but a recent study reported it was through stimulation of Na/K/2Cl (NKCC) cotransport. A second purpose of this study was to reconcile these two reports. Methods: Intracellular hydrostatic pressures were measured using a microelectrode/manometer system. Lenses from TRPV1 or Cx50 null mice were studied. Specific inhibitors of Cx50 gap junction channels, NKCC, and Akt were used. Results: Either knockout of Cx50 or blockade of Cx50 channels completely eliminated the response to positive surface pressures. Knockout of Cx50 also caused a positive drift in surface pressure. The short-term (â¼20-minute) response to negative surface pressures was eliminated by blockade of NKCC, but a long-term (â¼4-hour) response restored pressure to zero. Both short- and long-term responses were eliminated by knockout of TRPV1 or inhibition of Akt. Conclusions: Hemichannels made from Cx50 are required for the response to positive surface pressures. Negative surface pressures first activate NKCC, but a backup system is inhibition of Na/K ATPase activity. Both responses are initiated by TRPV1 and go through PI3K/Akt before branching.