Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 4081-4092, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297616

RESUMO

The instability of the clock laser is one of the primary factors limiting the instability of the optical clocks. We present an ultra-stable clock laser based on a 30-cm-long transportable cavity with an instability of ∼3 × 10-16 at 1 s-100 s. The cavity is fixed by invar poles in three orthogonal directions to restrict the displacement, meeting the requirements of transportability and low vibration sensitivity. By applying the ultra-stable laser to a transportable 40Ca+ optical clock with a systematic uncertainty of 4.8 × 10-18 and using the real-time feedback algorithm to compensate the linear shift of the clock laser, the short-term stability of the transportable 40Ca+ optical clock has been greatly improved from 4.0×10-15/τ/s to 1.16×10-15/τ/s, measured at ∼100 s-1000 s of averaging time, enriching its applications in metrology, optical frequency comparison, and time keeping.

2.
Phys Rev Lett ; 131(10): 103002, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739370

RESUMO

We investigate the 2^{3}S_{1}-2^{3}P_{J} (J=0, 1, 2) transitions in ^{6}Li^{+} using the optical Ramsey technique and achieve the most precise values of the hyperfine splittings of the 2^{3}S_{1} and 2^{3}P_{J} states, with smallest uncertainty of about 10 kHz. The present results reduce the uncertainties of previous experiments by a factor of 5 for the 2^{3}S_{1} state and a factor of 50 for the 2^{3}P_{J} states, and are in better agreement with theoretical values. Combining our measured hyperfine intervals of the 2^{3}S_{1} state with the latest quantum electrodynamic (QED) calculations, the improved Zemach radius of the ^{6}Li nucleus is determined to be 2.44(2) fm, with the uncertainty entirely due to the uncalculated QED effects of order mα^{7}. The result is in sharp disagreement with the value 3.71(16) fm determined from simple models of the nuclear charge and magnetization distribution. We call for a more definitive nuclear physics value of the ^{6}Li Zemach radius.

3.
Appl Opt ; 60(21): 6097-6102, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613273

RESUMO

Laser frequency stabilization plays an important role in high-precision spectroscopic measurements. Since high-accuracy commercial wavemeters became available, wavemeter-based frequency stabilization has found a broad application due to its convenience, flexibility, and wide applicability. However, such stabilization schemes frequently suffer from long-term drift, since the accuracy of the wavelength measurement of a wavemeter is affected by ambient temperature fluctuation. In this work, we demonstrate that such long-term drift can be suppressed by regularly calibrating the frequency of a wavemeter-locked laser utilizing an optical frequency comb, which has much better long-term stability. Under this dual-referenced locking scheme, the Allan deviation is reduced to 3.5 E-12 at 4000 s for a fiber laser operated at 548 nm, which when used in the optical Ramsey spectroscopic measurement of 7Li+, reduces the standard deviation by as much as 40%, compared to the case when only wavemeter locking is applied.

4.
Phys Rev Lett ; 125(18): 183002, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196244

RESUMO

The hyperfine structures of the 2^{3}S_{1} states of the ^{6}Li^{+} and ^{7}Li^{+} ions are investigated theoretically to extract the Zemach radii of the ^{6}Li and ^{7}Li nuclei by comparing with precision measurements. The obtained Zemach radii are larger than the previous values of Puchalski and Pachucki [Phys. Rev. Lett. 111, 243001 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.243001] and disagree with them by about 1.5 and 2.2 standard deviations for ^{6}Li and ^{7}Li, respectively. Furthermore, our Zemach radius of ^{6}Li differs significantly from the nuclear physics value, derived from the nuclear charge and magnetic radii [Phys. Rev. A 78, 012513 (2008)PLRAAN1050-294710.1103/PhysRevA.78.012513] by more than 6σ, indicating an anomalous nuclear structure for ^{6}Li. The conclusion that the Zemach radius of ^{7}Li is about 40% larger than that of ^{6}Li is confirmed. The obtained Zemach radii are used to calculate the hyperfine splittings of the 2^{3}P_{J} states of ^{6,7}Li^{+}, where an order of magnitude improvement over the previous theory has been achieved for ^{7}Li^{+}.

5.
Phys Rev Lett ; 114(22): 223001, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26196619

RESUMO

We demonstrate experimentally the existence of magic wavelengths and determine the ratio of oscillator strengths for a single trapped ion. For the first time, two magic wavelengths near 396 nm for the ^{40}Ca^{+} clock transition are measured simultaneously with high precision. By tuning the applied laser to an intermediate wavelength between transitions 4s_{1/2}→4p_{1/2} and 4s_{1/2}→4p_{3/2}, the sensitivity of the clock transition Stark shift to the oscillator strengths is greatly enhanced. Furthermore, with the measured magic wavelengths, we determine the ratio of the oscillator strengths with a deviation of less than 0.5%. Our experimental method may be applied to measure magic wavelengths for other ion clock transitions. Promisingly, the measurement of these magic wavelengths paves the way to building all-optical trapped ion clocks.

6.
Nat Commun ; 11(1): 1902, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312996

RESUMO

Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more striking features into physics of edge states, leading to the formation of edge solitons, optical isolation, making possible stable lasing in such states, to name a few. Here we report the observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice created via the effect of electromagnetically induced transparency in an atomic vapor cell with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to compensate strong absorption experienced by the edge state during propagation. Our observations may open the way for future experimental exploration of topological photonics on this nonlinear, reconfigurable platform.

7.
Rev Sci Instrum ; 90(4): 043112, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043027

RESUMO

The apparatus for fluorescence spectroscopy measurement is developed to determine the fine structure (FS)/hyperfine structure (HFS) splittings of 1s2p 3PJ(J=0,1,2) states of Li+. The instrument is composed of a low energy Li+ ion source and a saturated fluorescence spectroscopic probing system. A low energy Li+ ion source, containing 1.8(7)% of 1s2s 3S1 metastable ions with an energy of ∼500 eV, is obtained by an electron bombardment process. The ion current can stay more than 250 h with the variation of ∼0.3%, and the divergence of ion beam is ∼0.5 mrad. The symmetric profile of Lamb dip signals of 1s2s 3S1--1s2p 3PJ transitions with linewidths of ∼50 MHz are obtained after subtracting Doppler background from the saturated fluorescence signals. A back-and-forth scan method is adopted to determine the FS/HFS splittings of 1s2p 3PJ states. Under these conditions, as a preliminary test, several splittings of 7Li+ are measured. The statistical uncertainties of the FS/HFS splittings are estimated to be less than 50 kHz, and the results are one order of magnitude better than previous results. The apparatus is feasible to precisely determine the splittings of energy levels of alkali and alkaline earth ions.

8.
Rev Sci Instrum ; 90(9): 093301, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575235

RESUMO

A low-energy, compact, and superconducting electron beam ion trap (the Shanghai-Wuhan EBIT or SW-EBIT) for extraction of highly charged ions is presented. The magnetic field in the central drift tube of the SW-EBIT is approximately 0.21 T produced by a pair of high-temperature superconducting coils. The electron-beam energy of the SW-EBIT is in the range of 30-4000 eV, and the maximum electron-beam current is up to 9 mA. Acting as a source of highly charged ions, the ion-beam optics for extraction is integrated, including an ion extractor and an einzel lens. A Wien filter is then used to measure the charge-state distribution of the extracted ions. In this work, the tungsten ions below the charge state of 15 have been produced, extracted, and analyzed. The charge-state distributions and spectra in the range of 530-580 nm of tungsten ions have been measured simultaneously with the electron-beam energy of 279 eV and 300 eV, which preliminarily indicates that the 549.9 nm line comes from W14+.

9.
Rev Sci Instrum ; 87(6): 063121, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370440

RESUMO

A Ti:sapphire laser at 729 nm is frequency stabilized to an ultra-stable ultra-low thermal expansion coefficient (ULE) cavity by means of Pound-Drever-Hall method. An acousto-optic modulator is used as the fast frequency feedback component. 1 Hz linewidth and 2 × 10(-15) frequency stability at 1-100 s are characterized by optical beating with a separated Fabry-Perot cavity stabilized diode laser. Compared to the universal method that the error signal feedback to inject current of a diode laser, this scheme is demonstrated to be simple and also effective for linewidth narrowing. The temperature of zero coefficient of the thermal expansion of the ULE cavity is measured with the help of a femto-second frequency comb. And the performance of the laser is well defined by locking it to the unperturbed clock transition line-center of 4 S1/2-3 D5/2 clock transition of a single laser cooled (40)Ca(+) ion. A Fourier-transform limited resonance of 6 Hz (Δv/v = 1.5 × 10(-14)) is observed. This laser is also used as the local oscillator for the comparison experiment of two (40)Ca(+) ion optical clocks and improves the stability of comparison for an order of magnitude better than the previous results.

10.
Natl Sci Rev ; 7(12): 1799-1801, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34691516
11.
J Chem Phys ; 120(8): 3579-85, 2004 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268519

RESUMO

A quantum circuit is introduced to describe the preparation of a labeled pseudo-pure state by multiplet-component excitation scheme which has been experimentally implemented on a 4-qubit nuclear magnetic resonance quantum processor. Meanwhile, we theoretically analyze and numerically investigate the low-power selective single-pulse implementation of a controlled-rotation gate, which manifests its validity in our experiment. Based on the labeled pseudo-pure state prepared, a 3-qubit Bernstein-Vazirani algorithm has been experimentally demonstrated by spectral implementation. The "answers" of the computations are identified from the split peak positions in the spectra of the observer spin, which are equivalent to projective measurements required by the algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA