Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 23(1): 552, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536291

RESUMO

BACKGROUND: Medication recommendation based on electronic medical record (EMR) is a research hot spot in smart healthcare. For developing computational medication recommendation methods based on EMR, an important challenge is the lack of a large number of longitudinal EMR data with time correlation. Faced with this challenge, this paper proposes a new EMR-based medication recommendation model called MR-KPA, which combines knowledge-enhanced pre-training with the deep adversarial network to improve medication recommendation from both feature representation and the fine-tuning process. Firstly, a knowledge-enhanced pre-training visit model is proposed to realize domain knowledge-based external feature fusion and pre-training-based internal feature mining for improving the feature representation. Secondly, a medication recommendation model based on the deep adversarial network is developed to optimize the fine-tuning process of pre-training visit model and alleviate over-fitting of model caused by the task gap between pre-training and recommendation. RESULT: The experimental results on EMRs from medical and health institutions in Hainan Province, China show that the proposed MR-KPA model can effectively improve the accuracy of medication recommendation on small-scale longitudinal EMR data compared with existing representative methods. CONCLUSION: The advantages of the proposed MR-KPA are mainly attributed to knowledge enhancement based on ontology embedding, the pre-training visit model and adversarial training. Each of these three optimizations is very effective for improving the capability of medication recommendation on small-scale longitudinal EMR data, and the pre-training visit model has the most significant improvement effect. These three optimizations are also complementary, and their integration makes the proposed MR-KPA model achieve the best recommendation effect.


Assuntos
Registros Eletrônicos de Saúde , Bases de Conhecimento , China
2.
Environ Sci Pollut Res Int ; 30(4): 10360-10376, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36071362

RESUMO

Water quality prediction is an important research focus in smart water and can provide the support to control and reduce water pollution. However, existing water quality prediction models are mainly data-driven and only rely on various sensor data. This paper proposes a new water quality prediction modeling approach integrating data and knowledge. We develop a water quality prediction framework that combines knowledge graph and deep adversarial networks. The knowledge extraction and management compound extracts the water quality knowledge graph from different knowledge sources by using the deep adversarial joint model. The fusing parameter importance learning compound calculates the contribution of parameters in water quality prediction by taking into account both knowledge and data levels of correlation. Finally, a water quality prediction model combining weighted CNN-LSTM with adversarial learning predicts the values of total nitrogen based on real-time monitoring data. The experimental results on monitoring data from the Juhe River of China show that the proposed model can greatly improve the effect of water quality prediction.


Assuntos
Reconhecimento Automatizado de Padrão , Qualidade da Água , Poluição da Água , China , Conhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA