Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086757

RESUMO

In order to achieve a highly autonomous and reliable navigation system for aerial vehicles that involves the spectral redshift navigation system (SRS), the inertial navigation (INS)/spectral redshift navigation (SRS)/celestial navigation (CNS) integrated system is designed and the spectral-redshift-based velocity measurement equation in the INS/SRS/CNS system is derived. Furthermore, a new chi-square test-based robust Kalman filter (CSTRKF) is also proposed in order to improve the robustness of the INS/SRS/CNS navigation system. In the CSTRKF, the chi-square test (CST) not only detects measurements with outliers and in non-Gaussian distributions, but also estimates the statistical characteristics of measurement noise. Finally, the results of our simulations indicate that the INS/SRS/CNS integrated navigation system with the CSTRKF possesses strong robustness and high reliability.

2.
Sensors (Basel) ; 18(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415509

RESUMO

This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

3.
Sensors (Basel) ; 18(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642549

RESUMO

In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.

4.
Sensors (Basel) ; 18(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022009

RESUMO

This paper presents a new adaptive square-root unscented particle filtering algorithm by combining the adaptive filtering and square-root filtering into the unscented particle filter to inhibit the disturbance of kinematic model noise and the instability of filtering data in the process of nonlinear filtering. To prevent particles from degeneracy, the proposed algorithm adaptively adjusts the adaptive factor, which is constructed from predicted residuals, to refrain from the disturbance of abnormal observation and the kinematic model noise. Cholesky factorization is also applied to suppress the negative definiteness of the covariance matrices of the predicted state vector and observation vector. Experiments and comparison analysis were conducted to comprehensively evaluate the performance of the proposed algorithm. The results demonstrate that the proposed algorithm exhibits a strong overall performance for integrated navigation systems.

5.
ISA Trans ; 56: 135-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25467307

RESUMO

The tightly coupled INS/GPS integration introduces nonlinearity to the measurement equation of the Kalman filter due to the use of raw GPS pseudorange measurements. The extended Kalman filter (EKF) is a typical method to address the nonlinearity by linearizing the pseudorange measurements. However, the linearization may cause large modeling error or even degraded navigation solution. To solve this problem, this paper constructs a nonlinear measurement equation by including the second-order term in the Taylor series of the pseudorange measurements. Nevertheless, when using the unscented Kalman filter (UKF) to the INS/GPS integration for navigation estimation, it causes a great amount of redundant computation in the prediction process due to the linear feature of system state equation, especially for the case with system state vector in much higher dimension than measurement vector. To overcome this drawback in computational burden, this paper further develops a derivative UKF based on the constructed nonlinear measurement equation. The derivative UKF adopts the concise form of the original Kalman filter (KF) to the prediction process and employs the unscented transformation technique to the update process. Theoretical analysis and simulation results demonstrate that the derivative UKF can achieve higher accuracy with a much smaller computational cost in comparison with the traditional UKF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA