Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(6): 1583-1592, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201050

RESUMO

To implement a liquid crystal optical phased array (LC-OPA) on a practical free-space laser communication terminal, there are two essential parameters: insertion loss and the closed-loop bandwidth required to meet the dynamic linking condition of the acquisition-tracking-pointing sub-system. Real-time hardware platforms and deflection efficiency optimization algorithms have been suggested since the invention of LC-OPA. In this paper, the so-called ZYNQ platform, a field-programmable-gate-array-based heterogeneous system-on-chip (SoC), is utilized to keep real-time response and accelerate data generation, such as beam steering, beamforming, beam enhancement, etc. In addition, a novel, to the best of our knowledge, optimization algorithm is proposed on the concept of dimension reduction of the number of objective variables. After deploying on this heterogeneous SoC platform, numerical simulations and experimental results both verify that, compared to the conventional PC-based system, the integrated SoC platform offers 15.8 times faster iterative speed, a rapid convergence rate, and excellent robustness, yet with less usage of power, physical size, and monetary cost. The efficiency enhancement process costs only a few seconds at any angle, laying the foundation for practical in-line applications.

2.
Opt Express ; 29(20): 32535-32546, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615321

RESUMO

Ultrafast magnetization switching has aroused much interest in recent years. Due to the complicated physical mechanisms, helicity-independent all-optical switching (HI-AOS) still lacks comprehensive understanding. In this article, we revealed the influence of damping on HI-AOS based on the simulation of the semiclassical atomic spin dynamics model. The results suggested that the smaller damping not only contributes to the increase to the maximum required pulse duration and the pulse fluence threshold for switching but also slows down the rate of magnetization dynamics. Our simulation results could provide some theoretical foundation to explore the optimization parameters of HI-AOS.

3.
Nanoscale ; 12(17): 9859-9865, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32342960

RESUMO

Since the emergence of transition metal dichalcogenide (TMDC) based van der Waals (vdW) structures, interlayer charge transport has become an important issue towards the application of these novel materials. Due to the unique layered structure of these materials, charge transport across the vdW gaps via tunneling is governed by individual valleys with different interlayer coupling strengths. On the other hand, the omnipresent point defects in TMDCs could possibly cause intervalley scattering between these valleys. In this article, we investigate the influence of point defect induced intervalley scattering on the interlayer charge transport of the MoS2 homojunction by first principles calculation. We find that S vacancies and Mo-S antisite defects enhance the electron interlayer transport by intervalley scattering that divert the electrons from the non-interlayer coupling K valley to the strong interlayer coupling Q valley. The interlayer charge transport enhancement caused by such an intervalley scattering mechanism could pave the way towards understanding the interlayer charge transport in TMDC based vdW structures.

4.
Adv Mater ; 30(44): e1803285, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30589474

RESUMO

Alloying transition metal dichalcogenides (TMDs) with different compositions is demonstrated as an effective way to acquire 2D semiconductors with widely tunable bandgaps. Herein, for the first time, the large-area synthesis of layered HfS2(1- x )Se2 x alloys with fully tunable chemical compositions on sapphire by chemical vapor deposition is reported, greatly expanding and enriching the family of 2D TMDs semiconductors. The configuration and high quality of their crystal structure are confirmed by various characterization techniques, and the bandgap of these alloys can be continually modulated from 2.64 to 1.94 eV with composition variations. Furthermore, prototype HfS2(1- x )Se2 x photodetectors with different Se compositions are fabricated, and the HfSe2 photodetector manifests the best performance among all the tested HfS2(1- x )Se2 x devices. Remarkably, by introducing a hexagonal boron nitride layer, the performance of the HfSe2 photodetector is greatly improved, exhibiting a high on/off ratio exceeding 105, an ultrafast response time of about 190 µs, and a high detectivity of 1012 Jones. This simple and controllable approach opens up a new way to produce high-quality 2D HfS2(1- x )Se2 x layers, which are highly qualified candidates for the next-generation application in high-performance optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA