Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cerebrovasc Dis ; 53(2): 224-232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39250893

RESUMO

Research on the pathophysiological mechanism of carotid artery dissection and its clinical translation is limited due to the lack of effective animal models to simulate the occurrence of this condition. Assuming that intimal injury is an important factor in the formation of carotid dissection, we established a novel method for inducing carotid dissection models by scraping the carotid intima using a fine needle. Scraping the carotid intima with fine needles can induce the rapid formation of carotid dissection. Magnetic resonance imaging and hematoxylin-eosin staining suggest the presence of false lumens and mural hematomas in the vessels. Our model-induction technique, inspired by iatrogenic catheter-induced artery dissections (carotid, coronary, aortic), significantly mimics the pathological process of clinical carotid dissection. The results suggest that mechanical injury may be a significant cause of carotid dissection and that intimal injury is a major factor in the formation of arterial dissections. This approach will provide assistance in the understanding of medically induced arterial dissection.


Assuntos
Modelos Animais de Doenças , Túnica Íntima , Animais , Túnica Íntima/patologia , Túnica Íntima/lesões , Masculino , Artérias Carótidas/patologia , Artérias Carótidas/diagnóstico por imagem , Dissecação da Artéria Carótida Interna/diagnóstico por imagem , Dissecação da Artéria Carótida Interna/etiologia , Dissecação da Artéria Carótida Interna/patologia , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/diagnóstico por imagem , Lesões das Artérias Carótidas/etiologia , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/patologia , Dissecção Aórtica/etiologia
2.
Bioorg Chem ; 135: 106508, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023583

RESUMO

Fungal and viral diseases account for 70-80% of agricultural production losses caused by microbial diseases. Synthetic fungicides and antiviral agents have been used to treat plant diseases caused by plant pathogenic fungi and viruses, but their use has been criticized due to their adverse side effects. As alternative strategies, natural fungicides and antiviral agents have attracted many researchers' interest in recent years. Herein, we designed and synthesized a series of novel polycarpine simplified analogues. Antiviral activity research against tobacco mosaic virus (TMV) revealed that most of the designed compounds have good antiviral activities. The virucidal activities of 4, 6d, 6f, 6h, and 8c are higher than that of polycarpine and similar to that of ningnanmycin. The structure simplified compound 8c was selected for further antiviral mechanism research which showed that compound 8c could inhibit the formation of 20S protein discs by acting on TMV coat protein. These compounds also displayed broad-spectrum fungicidal activities against 7 kinds of plant fungi. This work lays the foundation for the application of polycarpine simplified analogues in crop protection.


Assuntos
Fungicidas Industriais , Vírus do Mosaico do Tabaco , Antivirais/química , Fungicidas Industriais/química , Relação Estrutura-Atividade , Fungos , Desenho de Fármacos
3.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049795

RESUMO

Pesticides are essential for the development of agriculture. It is urgent to develop green, safe and efficient pesticides. Bisindole alkaloids have unique and concise structures and broad biological activities, which make them an important leading skeleton in the creation of new pesticides. In this work, we synthesized bisindole alkaloid barakacin in a simple seven-step process, and simultaneously designed and synthesized a series of its derivatives. Biological activity research indicated that most of these compounds displayed good antiviral activities against tobacco mosaic virus (TMV). Among them, compound 14b exerted a superior inhibitory effect in comparison to commercially available antiviral agent ribavirin, and could be expected to become a novel antiviral candidate. Molecular biology experiments and molecular docking research found that the potential target of compound 14b was TMV coat protein (CP). These compounds also showed broad-spectrum anti-fungal activities against seven kinds of plant fungi.


Assuntos
Alcaloides , Fungicidas Industriais , Vírus do Mosaico do Tabaco , Antivirais/farmacologia , Antivirais/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Ribavirina/farmacologia , Alcaloides/química , Desenho de Fármacos
4.
J Neurochem ; 163(5): 419-437, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36269673

RESUMO

Subarachnoid haemorrhage (SAH) has a high rate of disability and mortality. Extremely damaging molecules, including adenosine triphosphate (ATP), are released from extravasated red blood cells and nerve cells, which activate microglia and induce sterile tissue injury and organ dysfunction. P2X purinoceptor 7 (P2X7) is one of the most important purine receptors on the microglial surface and is involved in the proinflammatory activation of microglia. While P2X7 can also affect microglial phagocytosis, the mechanism is not clear. Here, we demonstrated that microglial phagocytosis is progressively impaired under continued BzATP exposure and P2X7 activation. Furthermore, we found that P2X7 activation leads to increased intracellular Ca2+ levels and activates Calcineurin, which dephosphorylates dynamin-related protein 1 (DRP1) S637. The dephosphorylation of DRP1 at S637 leads to increased mitochondrial fission and decreased mitochondrial function, which may be responsible for the decreased microglial phagocytosis. Finally, we pharmacologically inhibited P2X7 activation in mice, which resulted in rescue of mitochondrial function and decreased microglial proliferation, but improved phagocytosis after SAH. Our study confirmed that P2X7 activation after SAH leads to the impairment of microglial phagocytosis through mitochondrial fission and verified that P2X7 inhibition restores microglial phagocytosis both in vitro and in vivo.


Assuntos
Microglia , Fagocitose , Receptores Purinérgicos P2X7 , Hemorragia Subaracnóidea , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Receptores Purinérgicos P2X7/metabolismo , Hemorragia Subaracnóidea/metabolismo , Humanos
5.
Neurochem Res ; 47(3): 590-600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34665391

RESUMO

Subarachnoid hemorrhage (SAH), as one of the most severe hemorrhagic strokes, is closely related to neuronal damage. Neurogenesis is a promising therapy, however, reliable targets are currently lacking. Increasing evidence has indicated that CD24 is associated with the growth of hippocampal neurons and the regulation of neural stem/precursor cell proliferation. To investigate the potential effect of CD24 in astrocytes on neuron growth in the hippocampus, we used a Transwell co-culture system of hippocampal astrocytes and neurons, and oxyhemoglobin (OxyHb) was added to the culture medium to mimic SAH in vitro. A specific lentivirus was used to knock down CD24 expression in astrocytes, which was verified by western blot, quantitative real-time polymerase chain reaction, and immunofluorescent staining. Astrocyte activation, neurite elongation, neuronal apoptosis, and cell viability were also assessed. We first determined the augmented expression level of CD24 in hippocampal astrocytes after SAH. A similar result was observed in cultured astrocytes exposed to OxyHb, and a corresponding change in SHP2/ERK was also noticed. CD24 in astrocytes was then downregulated by the lentivirus, which led to the impairment of axons and dendrites on the co-cultured neurons. Aggravated neuronal apoptosis was induced by the CD24 downregulation in astrocytes, which might be a result of a lower level of brain derived neurotrophic factor (BDNF). In conclusion, the knock-down of CD24 in astrocytes suppressed hippocampal neuron growth, in which the SHP2-ERK signaling pathway and BNDF were possibly involved.


Assuntos
Astrócitos , Antígeno CD24 , Oxiemoglobinas , Astrócitos/metabolismo , Antígeno CD24/genética , Antígeno CD24/fisiologia , Regulação para Baixo , Hipocampo/metabolismo , Neurogênese , Neurônios/metabolismo , Oxiemoglobinas/metabolismo , Oxiemoglobinas/farmacologia
6.
J Neuroinflammation ; 17(1): 239, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795323

RESUMO

BACKGROUND: Early brain injury (EBI) has been thought to be a key factor affecting the prognosis of subarachnoid hemorrhage (SAH). Many pathologies are involved in EBI, with inflammation and neuronal death being crucial to this process. Resolvin D1 (RvD1) has shown superior anti-inflammatory properties by interacting with lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) in various diseases. However, it remains not well described about its role in the central nervous system (CNS). Thus, the goal of the present study was to elucidate the potential functions of the RvD1-ALX/FPR2 interaction in the brain after SAH. METHODS: We used an in vivo model of endovascular perforation and an in vitro model of hemoglobin (Hb) exposure as SAH models in the current study. RvD1 was used at a concentration of 25 nM in our experiments. Western blotting, quantitative polymerase chain reaction (qPCR), immunofluorescence, and other chemical-based assays were performed to assess the cellular localizations and time course fluctuations in ALX/FPR2 expression, evaluate the effects of RvD1 on Hb-induced primary microglial activation and neuronal damage, and confirm the role of ALX/FPR2 in the function of RvD1. RESULTS: ALX/FPR2 was expressed on both microglia and neurons, but not astrocytes. RvD1 exerted a good inhibitory effect in the microglial pro-inflammatory response induced by Hb, possibly by regulating the IRAK1/TRAF6/NF-κB or MAPK signaling pathways. RvD1 could also potentially attenuate Hb-induced neuronal oxidative damage and apoptosis. Finally, the mRNA expression of IRAK1/TRAF6 in microglia and GPx1/bcl-xL in neurons was reversed by the ALX/FPR2-specific antagonist Trp-Arg-Trp-Trp-Trp-Trp-NH2 (WRW4), indicating that ALX/FPR2 could mediate the neuroprotective effects of RvD1. CONCLUSIONS: The results of the present study indicated that the RvD1-ALX/FPR2 interaction could potentially play dual roles in the CNS, as inhibiting Hb promoted microglial pro-inflammatory polarization and ameliorating Hb induced neuronal oxidant damage and death. These results shed light on a good therapeutic target (ALX/FPR2) and a potential effective drug (RvD1) for the treatment of SAH and other inflammation-associated brain diseases.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Receptores de Lipoxinas/metabolismo , Hemorragia Subaracnóidea/metabolismo , Animais , Morte Celular/fisiologia , Hemoglobinas , Inflamação/patologia , Microglia/patologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/patologia
7.
J Neuroinflammation ; 17(1): 188, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539839

RESUMO

BACKGROUND: Aucubin (Au), an iridoid glycoside from natural plants, has antioxidative and anti-inflammatory bioactivities; however, its effects on a traumatic brain injury (TBI) model remain unknown. We explored the potential role of Au in an H2O2-induced oxidant damage in primary cortical neurons and weight-drop induced-TBI in a mouse model. METHODS: In vitro experiments, the various concentrations of Au (50 µg/ml, 100 µg/ml, or 200 µg/ml) were added in culture medium at 0 h and 6 h after neurons stimulated by H2O2 (100 µM). After exposed for 12 h, neurons were collected for western blot (WB), immunofluorescence, and M29,79-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. In vivo experiments, Au (20 mg/kg or 40 mg/kg) was administrated intraperitoneally at 30 min, 12 h, 24 h, and 48 h after modeling. Brain water content, neurological deficits, and cognitive functions were measured at specific time, respectively. Cortical tissue around focal trauma was collected for WB, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, Nissl staining, quantitative real time polymerase chain reaction (q-PCR), immunofluorescence/immunohistochemistry, and enzyme linked immunosorbent assay (ELISA) at 72 h after TBI. RNA interference experiments were performed to determine the effects of nuclear factor erythroid-2 related factor 2 (Nrf2) on TBI mice with Au (40 mg/kg) treatment. Mice were intracerebroventricularly administrated with lentivirus at 72 h before TBI establishment. The cortex was obtained at 72 h after TBI and used for WB and q-PCR. RESULTS: Au enhanced the translocation of Nrf2 into the nucleus, activated antioxidant enzymes, suppressed excessive generation of reactive oxygen species (ROS), and reduced cell apoptosis both in vitro and vivo experiments. In the mice model of TBI, Au markedly attenuated brain edema, histological damages, and improved neurological and cognitive deficits. Au significantly suppressed high mobility group box 1 (HMGB1)-mediated aseptic inflammation. Nrf2 knockdown in TBI mice blunted the antioxidant and anti-inflammatory neuroprotective effects of the Au. CONCLUSIONS: Taken together, our data suggest that Au provides a neuroprotective effect in TBI mice model by inhibiting oxidative stress and inflammatory responses; the mechanisms involve triggering Nrf2-induced antioxidant system.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Inflamação/patologia , Glucosídeos Iridoides/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
FASEB J ; 33(2): 3051-3062, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30351993

RESUMO

Recent studies suggest that peroxiredoxin1/2 (Prx1/2) may be involved in the pathophysiology of postischemic inflammatory responses in the brain. In this study, we assessed the distribution and function of Prx1/2 in mice after experimental subarachnoid hemorrhage (SAH). We investigated the distribution of Prx1/2 in the brains of mice both in vivo and in vitro using immunofluorescence staining. The expression of Prx1/2 after SAH was determined by Western blot. Adenanthin was used to inhibit Prx1/2 function, and Prx1/2 overexpression was achieved by injecting adeno-associated virus. Oxidative stress and neuronal apoptosis were assessed both in vivo and in vitro. The neurologic function, inflammatory response, and related cellular signals were analyzed. The results showed that Prx1 was mainly expressed in astrocytes, and Prx2 was abundant in neurons. The expression of Prx1/2 was elevated after SAH, and their expression levels peaked before proinflammatory cytokines. Inhibiting Prx1/2 promoted neuronal apoptosis by increasing the hydrogen peroxide (H2O2) levels via the apoptosis signal-regulating kinase 1/p38 pathway. By contrast, overexpression of Prx1/2 attenuated oxidative stress and neuronal apoptosis after SAH. Thus, early expression of Prx1/2 may protect the brain from oxidative damage after SAH and may provide a novel target for treating SAH.-Lu, Y., Zhang, X.-S., Zhou, X.-M., Gao, Y.-Y., Chen, C.-L., Liu, J.-P., Ye, Z.-N., Zhang, Z.-H., Wu, L.-Y., Li, W., Hang, C.-H. Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage.


Assuntos
Apoptose/efeitos dos fármacos , Lesões Encefálicas/prevenção & controle , Encéfalo/fisiologia , Proteínas de Homeodomínio/metabolismo , Peróxido de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Hemorragia Subaracnóidea/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Córtex Cerebral , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidantes/farmacologia , Estresse Oxidativo , Transdução de Sinais
9.
J Surg Res ; 245: 321-329, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421380

RESUMO

In the adult rodents' brain, CD24 expression is restricted to immature neurons located in the neurogenesis areas. Our previous studies have confirmed that CD24 expression could be markedly elevated in the cerebral cortex after traumatic brain injury (TBI) both in humans and in mice. Although there is a close relationship between CD24 and neurogenesis, it remains unknown about the specific role of CD24 in neurogenesis areas after TBI. Here, the expression of CD24 was detected in the ipsilateral hippocampus by the Western blotting and real-time quantitative polymerase chain reaction. RNA interference was applied to investigate the effects of CD24 on post-traumatic neurogenesis. Brain sections were labeled with CD24 and doublecortin (DCX) via immunofluorescence. The Morris water maze test was used to assess cognitive functions. The results indicated that both mRNA and protein levels of CD24 were markedly elevated in the hippocampus after TBI. Meanwhile, TBI could cause a decrease of DCX-positive cells in the dentate gyrus of the hippocampus. Downregulation of CD24 significantly inhibited the phosphorylation of Src homology region 2-containing protein tyrosine phosphatase 2 in the ipsilateral hippocampus. Meanwhile, inhibition of CD24 could reduce the number of DCX-positive cells in the dentate gyrus area and impair cognitive functions of the TBI mice. These data suggested that hippocampal expression of CD24 might positively regulate neurogenesis and improve cognitive functions after TBI.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Antígeno CD24/metabolismo , Cognição/fisiologia , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Animais , Antígeno CD24/genética , Modelos Animais de Doenças , Proteína Duplacortina , Regulação para Baixo , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Neurônios/fisiologia , RNA Interferente Pequeno/metabolismo , Recuperação de Função Fisiológica , Regulação para Cima
10.
J Neuroinflammation ; 16(1): 243, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779639

RESUMO

BACKGROUND: Microglia are resident immune cells in the central nervous system and central to the innate immune system. Excessive activation of microglia after subarachnoid haemorrhage (SAH) contributes greatly to early brain injury, which is responsible for poor outcomes. Dehydroepiandrosterone (DHEA), a steroid hormone enriched in the brain, has recently been found to regulate microglial activation. The purpose of this study was to address the role of DHEA in SAH. METHODS: We used in vivo models of endovascular perforation and in vitro models of haemoglobin exposure to illustrate the effects of DHEA on microglia in SAH. RESULTS: In experimental SAH mice, exogenous DHEA administration increased DHEA levels in the brain and modulated microglial activation. Ameliorated neuronal damage and improved neurological outcomes were also observed in the SAH mice pretreated with DHEA, suggesting neuronal protective effects of DHEA. In cultured microglia, DHEA elevated the mRNA and protein levels of Jumonji d3 (JMJD3, histone 3 demethylase) after haemoglobin exposure, downregulated the H3K27me3 level, and inhibited the transcription of proinflammatory genes. The devastating proinflammatory microglia-mediated effects on primary neurons were also attenuated by DHEA; however, specific inhibition of JMJD3 abolished the protective effects of DHEA. We next verified that DHEA-induced JMJD3 expression, at least in part, through the tropomyosin-related kinase A (TrkA)/Akt signalling pathway. CONCLUSIONS: DHEA has a neuroprotective effect after SAH. Moreover, DHEA increases microglial JMJD3 expression to regulate proinflammatory/anti-inflammatory microglial activation after haemoglobin exposure, thereby suppressing inflammation.


Assuntos
Desidroepiandrosterona/farmacologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Hemorragia Subaracnóidea/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Cell Mol Med ; 22(2): 883-891, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205806

RESUMO

The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC-1α pathway in putative neuroprotection. Wild-type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI-induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC-1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC-1α pathway.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Mitocôndrias/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Quercetina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/patologia , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Caspase 3/metabolismo , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Degeneração Neural/complicações , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Quercetina/administração & dosagem , Quercetina/farmacologia , Água
13.
J Neuroinflammation ; 15(1): 87, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29554978

RESUMO

BACKGROUND: Peroxiredoxin (Prx) protein family have been reported as important damage-associated molecular patterns (DAMPs) in ischemic stroke. Since peroxiredoxin 2 (Prx2) is the third most abundant protein in erythrocytes and the second most protein in the cerebrospinal fluid in traumatic brain injury and subarachnoid hemorrhage (SAH) patients, we assessed the role of extracellular Prx2 in the context of SAH. METHODS: We introduced a co-culture system of primary neurons and microglia. Prx2 was added to culture medium with oxyhemoglobin (OxyHb) to mimic SAH in vitro. Neuronal cell viability was assessed by lactate dehydrogenase (LDH) assay, and neuronal apoptosis was determined by TUNEL staining. Inflammatory factors in culture medium were measured by ELISA, and their mRNA levels in microglia were determined by qPCR. Toll-like receptor 4 knockout (TLR4-KO) mice were used to provide TLR4-KO microglia; ST-2825 was used to inhibit MyD88, and pyrrolidine dithiocarbamate (PDTC) was used to inhibit NF-κB. Related cellular signals were analyzed by Western blot. Furthermore, we detected the level of Prx2 in aneurysmal SAH patients' cerebrospinal fluids (CSF) and compared its relationship with Hunt-Hess grades. RESULTS: Prx2 interacted with TLR4 on microglia after SAH and then activated microglia through TLR4/MyD88/NF-κB signaling pathway. Pro-inflammatory factors were expressed and released, eventually caused neuronal apoptosis. The levels of Prx2 in SAH patients positively correlated with Hunt-Hess grades. CONCLUSIONS: Extracellular Prx2 in CSF after SAH is a DAMP which resulted in microglial activation via TLR4/MyD88/NF-κB pathway and then neuronal apoptosis. Prx2 in patients' CSF may be a potential indicator of brain injury and prognosis.


Assuntos
Microglia/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacologia , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Receptor 4 Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Córtex Cerebral/citologia , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Marcação In Situ das Extremidades Cortadas , L-Lactato Desidrogenase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxiemoglobinas/farmacologia , Pirrolidinas/farmacologia , RNA Mensageiro/metabolismo , Compostos de Espiro/farmacologia , Tiocarbamatos/farmacologia , Receptor 4 Toll-Like/genética
15.
J Surg Res ; 206(1): 67-76, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27916377

RESUMO

BACKGROUND: Tetrahydrocurcumin provides neuroprotection in multiple neurologic disorders by modulating oxidative stress, inflammatory responses, and autophagy. However, in traumatic brain injury (TBI), it is unclear whether a beneficial effect of tetrahydrocurcumin exists. In this study, we hypothesized that administration of tetrahydrocurcumin provides neuroprotection in a rat model of TBI. MATERIAL AND METHODS: Behavioral studies were performed by recording and analyzing beam-walking scores. The role of tetrahydrocurcumin on neurons death was assessed via Nissl staining. We then performed Western blot analyses, terminal deoxynucleotidyl transferase 2'-deoxyuridine-5'-triphosphate (dUTP) nick end labeling assays and immunofluorescence staining to evaluate autophagy and apoptosis. Phospho-protein kinase B (p-AKT) was also assessed via Western blotting. RESULTS: Our data indicated that administration of tetrahydrocurcumin alleviated brain edema, attenuated TBI-induced neuron cell death, decreased the degree of apoptosis and improved neurobehavioral function, which were accompanied by enhanced autophagy and phospho-AKT after TBI. Moreover, the autophagy inhibitor 3-methyladenine and the PI3K kinase inhibitor LY294002 partially reversed the neuroprotection of tetrahydrocurcumin after TBI. CONCLUSIONS: This study indicates that tetrahydrocurcumin protects neurons from TBI-induced apoptotic neuronal death, which may be through modulation autophagy and PI3K/AKT pathways. Thus, tetrahydrocurcumin may be an attractive therapeutic agent for TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Curcumina/análogos & derivados , Fármacos Neuroprotetores/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Western Blotting , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Masculino , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
16.
J Craniofac Surg ; 27(3): e253-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26999696

RESUMO

To the authors' knowledge, most of intracranial arachnoid cyst located in middle cranial fossa and lateral fissure cistern. So, huge frontal-temporal lobe arachnoid cyst is rare. Symptoms of arachnoid cyst may be atypical, including headache, nausea, vomiting, epilepsy, poor memory, and so on. Of course, migraine related to weariness is a rare benign headache disorder. The authors reported a patient presenting with weariness migraine associated with large frontal-temporal lobe arachnoid cyst.


Assuntos
Cistos Aracnóideos/diagnóstico , Fossa Craniana Média/diagnóstico por imagem , Transtornos de Enxaqueca/etiologia , Cistos Aracnóideos/complicações , Cistos Aracnóideos/cirurgia , Craniotomia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos de Enxaqueca/diagnóstico , Adulto Jovem
17.
Toxics ; 12(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39195661

RESUMO

Glyphosate is the most widely used herbicide in the world. This study aimed to evaluate the relationships among urinary glyphosate, all-cause mortality and cardiovascular diseases (CVD)-related mortality in the general US population of adults, and to determine the role of alkaline phosphatase (ALP), an inflammation marker that is associated with glyphosate exposure, in these relationships. Subjects from the National Health and Nutrition Examination Survey (NHANES) 2013-2018 cycles were included. Survey-weighted Cox regression analysis was applied to estimate the relationship of glyphosate with overall and CVD mortalities. Restricted cubic spline (RCS) analysis was utilized to detect the linearity of associations. The intermediary role of ALP was explored by mediation analysis. Our results found consistent and positive associations of glyphosate with all-cause mortality (HR: 1.29, 95%CI: 1.05-1.59) and CVD mortality (HR: 1.32, 95%CI: 1.02-1.70). RCS curves further validated linear and positive dose-dependent relationships between glyphosate and mortality-related outcomes. Moreover, serum ALP was identified as a mediator in these associations and explained 12.1% and 14.0% of the total associations between glyphosate and all-cause death and CVD death risk, respectively. Our study indicated that glyphosate was associated with increased all-cause and CVD mortality in humans. Increased ALP may play an essential role in these associations.

18.
World Neurosurg ; 183: e22-e27, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37865196

RESUMO

OBJECTIVE: Systemic inflammation following traumatic brain injury (TBI) has been extensively studied over the past decades, as it contributes significantly to the pathophysiological injury mechanisms and subsequent poor outcomes. Systemic immune-inflammation (SII) index is a novel biomarker of systemic inflammatory response. However, its predictive value regarding TBI prognosis in clinical practice remains insufficiently investigated. METHODS: A total of 102 TBI patients admitted to Nanjing Drum Tower Hospital from July 2019 to February 2022 were enrolled. We employed various statistical analyses to evaluate the correlation between inflammatory indicators upon admission and patient prognosis, compared the predictive accuracy of these indicators, and generated receiver operating curve analysis to test their prognostic performance. RESULTS: The SII index, platelet count, absolute lymphocyte count, and neutrophil/lymphocyte ratio (NLR) were capable of distinguishing TBI prognosis according to univariate logistic regression models (P < 0.05). Multivariate logistic regression models revealed that increased SII index, platelet count, and NLR upon admission were independent predictors of poor TBI prognosis (P < 0.05). Receiver operating curve analysis further demonstrated that the SII index (area under the curve = 0.845, 95% confidence interval 0.769-0.921, P = 0.000) exhibited higher predictive ability than the NLR (area under the curve = 0.694, 95% confidence interval 0.591-0.796, P = 0.001). CONCLUSIONS: Our findings suggested that increased SII index during the early stages of TBI was an independent risk factor for poor prognosis with satisfactory predictive value. The SII index provides a reliable, convenient, and cost-effective prognostic model to evaluate systemic inflammation after TBI and identify patients at risk of poor outcomes, thereby offering valuable guidance for clinical practice.


Assuntos
Lesões Encefálicas Traumáticas , Linfócitos , Humanos , Estudos Retrospectivos , Prognóstico , Inflamação , Lesões Encefálicas Traumáticas/diagnóstico
19.
Exp Neurol ; 380: 114904, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094768

RESUMO

Intact autophagy-lysosomal pathway (ALP) in neuronal survival is crucial. However, it remains unclear whether ALP is intact after subarachnoid hemorrhage (SAH). Ten-eleven translocation (TET) 3 primarily regulates genes related to autophagy in neurons in neurodegenerative diseases. This study aims to investigate the role of TET3 in the ALP following SAH. The results indicate that the ALP is impaired after SAH, with suppressed autophagic flux and an increase in autophagosomes. This is accompanied by a decrease in TET3 expression. Activation of TET3 by α-KG can improve ALP function and neural function to some extent. Silencing TET3 in neurons significantly inhibited the ALP function and increased apoptosis. Inhibition of miR-93-5p, which is elevated after SAH, promotes TET3 expression. This suggests that the downregulation of TET3 after SAH is, at least in part, due to elevated miR-93-5p. This study clarifies the key role of TET3 in the functional impairment of the ALP after SAH. The preliminary exploration revealed that miR-93-5p could lead to the downregulation of TET3, which could be a new target for neuroprotective therapy after SAH.


Assuntos
Autofagia , Lisossomos , MicroRNAs , Hemorragia Subaracnóidea , Animais , Masculino , Camundongos , Autofagia/fisiologia , Dioxigenases , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/genética
20.
Dis Markers ; 2023: 5781180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793477

RESUMO

Purpose: We have demonstrated that peroxiredoxin 2 (Prx2) released from lytic erythrocytes and damaged neurons into the subarachnoid space could activate microglia and then result in neuronal apoptosis. In this study, we tested the possibility of using Prx2 as an objective indicator for severity of the subarachnoid hemorrhage (SAH) and the clinical status of the patient. Materials and Methods: SAH patients were prospectively enrolled and followed up for 3 months. Cerebrospinal fluid (CSF) and blood samples were collected 0-3 and 5-7 days after SAH onset. The levels of Prx2 in the CSF and the blood were measured by an enzyme-linked immunosorbent assay (ELISA). We used Spearman's rank coefficient to assess the correlation between Prx2 and the clinical scores. Receiver operating characteristic (ROC) curves were used for Prx2 levels to predict the outcome of SAH by calculating the area under the curve (AUC). Unpaired Student's t-test was used to analyze the differences in continuous variables across cohorts. Results: Prx2 levels in the CSF increased after onset while those in the blood decreased. Existing data showed that Prx2 levels within 3 days in the CSF after SAH were positively correlated with the Hunt-Hess score (R = 0.761, P < 0.001). Patients with CVS had higher levels of Prx2 in their CSF within 5-7 days after onset. Prx2 levels in the CSF within 5-7 days can be used as a predictor of prognosis. The ratio of Prx2 in the CSF and the blood within 3 days of onset was positively correlated with the Hunt-Hess score and negatively correlated with Glasgow Outcome Scale (GOS; R = -0.605, P < 0.05). Conclusion: We found that the levels of Prx2 in the CSF and the ratio of Prx2 in the CSF and the blood within 3 days of onset can be used as a biomarker to detect the severity of the disease and the clinical status of the patient.


Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Peroxirredoxinas , Prognóstico , Biomarcadores/líquido cefalorraquidiano , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA