Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33242424

RESUMO

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteogenômica , Neoplasias Encefálicas/imunologia , Criança , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mutação/genética , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
2.
Blood ; 133(26): 2776-2789, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31101622

RESUMO

Anaplastic large cell lymphomas (ALCLs) represent a relatively common group of T-cell non-Hodgkin lymphomas (T-NHLs) that are unified by similar pathologic features but demonstrate marked genetic heterogeneity. ALCLs are broadly classified as being anaplastic lymphoma kinase (ALK)+ or ALK-, based on the presence or absence of ALK rearrangements. Exome sequencing of 62 T-NHLs identified a previously unreported recurrent mutation in the musculin gene, MSC E116K, exclusively in ALK- ALCLs. Additional sequencing for a total of 238 T-NHLs confirmed the specificity of MSC E116K for ALK- ALCL and further demonstrated that 14 of 15 mutated cases (93%) had coexisting DUSP22 rearrangements. Musculin is a basic helix-loop-helix (bHLH) transcription factor that heterodimerizes with other bHLH proteins to regulate lymphocyte development. The E116K mutation localized to the DNA binding domain of musculin and permitted formation of musculin-bHLH heterodimers but prevented their binding to authentic target sequence. Functional analysis showed MSCE116K acted in a dominant-negative fashion, reversing wild-type musculin-induced repression of MYC and cell cycle inhibition. Chromatin immunoprecipitation-sequencing and transcriptome analysis identified the cell cycle regulatory gene E2F2 as a direct transcriptional target of musculin. MSCE116K reversed E2F2-induced cell cycle arrest and promoted expression of the CD30-IRF4-MYC axis, whereas its expression was reciprocally induced by binding of IRF4 to the MSC promoter. Finally, ALCL cells expressing MSC E116K were preferentially targeted by the BET inhibitor JQ1. These findings identify a novel recurrent MSC mutation as a key driver of the CD30-IRF4-MYC axis and cell cycle progression in a unique subset of ALCLs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfoma Anaplásico de Células Grandes/genética , Quinase do Linfoma Anaplásico/genética , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação
3.
BMC Bioinformatics ; 21(1): 577, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317447

RESUMO

BACKGROUND: Gene fusion events are significant sources of somatic variation across adult and pediatric cancers and are some of the most clinically-effective therapeutic targets, yet low consensus of RNA-Seq fusion prediction algorithms makes therapeutic prioritization difficult. In addition, events such as polymerase read-throughs, mis-mapping due to gene homology, and fusions occurring in healthy normal tissue require informed filtering, making it difficult for researchers and clinicians to rapidly discern gene fusions that might be true underlying oncogenic drivers of a tumor and in some cases, appropriate targets for therapy. RESULTS: We developed annoFuse, an R package, and shinyFuse, a companion web application, to annotate, prioritize, and explore biologically-relevant expressed gene fusions, downstream of fusion calling. We validated annoFuse using a random cohort of TCGA RNA-Seq samples (N = 160) and achieved a 96% sensitivity for retention of high-confidence fusions (N = 603). annoFuse uses FusionAnnotator annotations to filter non-oncogenic and/or artifactual fusions. Then, fusions are prioritized if previously reported in TCGA and/or fusions containing gene partners that are known oncogenes, tumor suppressor genes, COSMIC genes, and/or transcription factors. We applied annoFuse to fusion calls from pediatric brain tumor RNA-Seq samples (N = 1028) provided as part of the Open Pediatric Brain Tumor Atlas (OpenPBTA) Project to determine recurrent fusions and recurrently-fused genes within different brain tumor histologies. annoFuse annotates protein domains using the PFAM database, assesses reciprocality, and annotates gene partners for kinase domain retention. As a standard function, reportFuse enables generation of a reproducible R Markdown report to summarize filtered fusions, visualize breakpoints and protein domains by transcript, and plot recurrent fusions within cohorts. Finally, we created shinyFuse for algorithm-agnostic interactive exploration and plotting of gene fusions. CONCLUSIONS: annoFuse provides standardized filtering and annotation for gene fusion calls from STAR-Fusion and Arriba by merging, filtering, and prioritizing putative oncogenic fusions across large cancer datasets, as demonstrated here with data from the OpenPBTA project. We are expanding the package to be widely-applicable to other fusion algorithms and expect annoFuse to provide researchers a method for rapidly evaluating, prioritizing, and translating fusion findings in patient tumors.


Assuntos
Fusão Gênica , Neoplasias/genética , RNA/metabolismo , Software , Algoritmos , Humanos , Neoplasias/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , RNA/genética
4.
Proc Natl Acad Sci U S A ; 114(15): 3933-3938, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348210

RESUMO

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development akin to FAK kinase-dead mice. We identified myosin-1E (MYO1E), an actin-dependent molecular motor, to interact directly with the FAK FERM-kinase linker and induce FAK kinase activity and Y397 phosphorylation. Active FAK in turn accumulated in the nucleus where it led to the expression of osteopontin and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Melanoma/metabolismo , Miosinas/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Perda do Embrião/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Humanos , Melanoma/patologia , Mesoderma/embriologia , Camundongos Mutantes , Miosina Tipo I , Miosinas/química , Miosinas/genética , Osteopontina/genética , Osteopontina/metabolismo , Fosforilação , Gravidez , Domínios Proteicos , Neoplasias Cutâneas/patologia , Tirosina/metabolismo
5.
Neuro Oncol ; 25(7): 1331-1342, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541551

RESUMO

BACKGROUND: To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS: We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS: ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS: We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Reparo de Erro de Pareamento de DNA , Homeostase do Telômero/genética , Proteína Nuclear Ligada ao X/genética , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação , Telômero/genética , Telômero/patologia
6.
Cell Genom ; 3(7): 100340, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37492101

RESUMO

Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.

7.
Clin Cancer Res ; 28(18): 3965-3978, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35852795

RESUMO

PURPOSE: PNOC003 is a multicenter precision medicine trial for children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG). PATIENTS AND METHODS: Patients (3-25 years) were enrolled on the basis of imaging consistent with DIPG. Biopsy tissue was collected for whole-exome and mRNA sequencing. After radiotherapy (RT), patients were assigned up to four FDA-approved drugs based on molecular tumor board recommendations. H3K27M-mutant circulating tumor DNA (ctDNA) was longitudinally measured. Tumor tissue and matched primary cell lines were characterized using whole-genome sequencing and DNA methylation profiling. When applicable, results were verified in an independent cohort from the Children's Brain Tumor Network (CBTN). RESULTS: Of 38 patients enrolled, 28 patients (median 6 years, 10 females) were reviewed by the molecular tumor board. Of those, 19 followed treatment recommendations. Median overall survival (OS) was 13.1 months [95% confidence interval (CI), 11.2-18.4] with no difference between patients who followed recommendations and those who did not. H3K27M-mutant ctDNA was detected at baseline in 60% of cases tested and associated with response to RT and survival. Eleven cell lines were established, showing 100% fidelity of key somatic driver gene alterations in the primary tumor. In H3K27-altered DIPGs, TP53 mutations were associated with worse OS (TP53mut 11.1 mo; 95% CI, 8.7-14; TP53wt 13.3 mo; 95% CI, 11.8-NA; P = 3.4e-2), genome instability (P = 3.1e-3), and RT resistance (P = 6.4e-4). The CBTN cohort confirmed an association between TP53 mutation status, genome instability, and clinical outcome. CONCLUSIONS: Upfront treatment-naïve biopsy provides insight into clinically relevant molecular alterations and prognostic biomarkers for H3K27-altered DIPGs.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , DNA Tumoral Circulante , Glioma Pontino Intrínseco Difuso , Glioma , Biologia , Biomarcadores , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Criança , DNA Tumoral Circulante/genética , Glioma Pontino Intrínseco Difuso/genética , Feminino , Instabilidade Genômica , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Adulto Jovem
8.
Cell Rep ; 34(13): 108917, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789113

RESUMO

Tumor-associated macrophages (TAMs) play an important role in tumor immunity and comprise of subsets that have distinct phenotype, function, and ontology. Transcriptomic analyses of human medulloblastoma, the most common malignant pediatric brain cancer, showed that medulloblastomas (MBs) with activated sonic hedgehog signaling (SHH-MB) have significantly more TAMs than other MB subtypes. Therefore, we examined MB-associated TAMs by single-cell RNA sequencing of autochthonous murine SHH-MB at steady state and under two distinct treatment modalities: molecular-targeted inhibitor and radiation. Our analyses reveal significant TAM heterogeneity, identify markers of ontologically distinct TAM subsets, and show the impact of brain microenvironment on the differentiation of tumor-infiltrating monocytes. TAM composition undergoes dramatic changes with treatment and differs significantly between molecular-targeted and radiation therapy. We identify an immunosuppressive monocyte-derived TAM subset that emerges with radiation therapy and demonstrate its role in regulating T cell and neutrophil infiltration in MB.


Assuntos
Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/terapia , Proteínas Hedgehog/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Meduloblastoma/patologia , Meduloblastoma/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/imunologia , Marcadores Genéticos , Humanos , Meduloblastoma/genética , Meduloblastoma/imunologia , Camundongos , Microglia/patologia , Monócitos/patologia , Análise de Célula Única , Transcrição Gênica , Microambiente Tumoral
9.
Oncol Rep ; 44(1): 263-272, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319659

RESUMO

Neuroblastomas (NBs) have heterogeneous clinical behavior, from spontaneous regression or differentiation to relentless progression. Evidence from our laboratory and others suggests that neurotrophin receptors contribute to these disparate behaviors. Previously, the role of TRK receptors in NB pathogenesis was investigated. In the present study, the expression of RET and its co­receptors in a panel of NB cell lines was investigated and responses to cognate ligands GDNF, NRTN, and ARTN with GFRα1­3 co­receptor expression, respectively were found to be correlated. RET expression was high in NBLS, moderate in SY5Y, low/absent in NBEBc1 and NLF cells. All cell lines expressed at least one of GFRα co­receptors. In addition, NBLS, SY5Y, NBEBc1 and NLF cells showed different morphological changes in response to ligands. As expected, activation of RET/GFRα3 by ARTN resulted in RET phosphorylation. Interestingly, activation of TrkA by its cognate ligand NGF resulted in RET phosphorylation at Y905, Y1015, and Y1062, and this was inhibited in a dose­dependent manner by the TRK inhibitor (CEP­701). Conversely, RET activation by ARTN in NBLS cells led to phosphorylation of TrkA. This suggests a physical association between RET and TRK proteins, and cross­talk between these two receptor pathways. Finally, RET, GFR and TRK expression in primary tumors was investigated and a significant association between RET, its co­receptors and TRK expression was demonstrated. Thus, the present data support a complex model of interacting neurotrophin receptor pathways in the regulation of cell growth and differentiation in NBs.


Assuntos
Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor trkA/metabolismo , Regulação para Cima , Carbazóis/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Furanos , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Humanos , Neuroblastoma/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/genética , Transdução de Sinais , Fatores ras de Troca de Nucleotídeo Guanina
10.
Sci Rep ; 10(1): 10954, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616776

RESUMO

Children diagnosed with brain tumors have the lowest overall survival of all pediatric cancers. Recent molecular studies have resulted in the discovery of recurrent driver mutations in many pediatric brain tumors. However, despite these molecular advances, the clinical outcomes of high grade tumors, including H3K27M diffuse midline glioma (H3K27M DMG), remain poor. To address the paucity of tissue for biological studies, we have established a comprehensive protocol for the coordination and processing of donated specimens at postmortem. Since 2010, 60 postmortem pediatric brain tumor donations from 26 institutions were coordinated and collected. Patient derived xenograft models and cell cultures were successfully created (76% and 44% of attempts respectively), irrespective of postmortem processing time. Histological analysis of mid-sagittal whole brain sections revealed evidence of treatment response, immune cell infiltration and the migratory path of infiltrating H3K27M DMG cells into other midline structures and cerebral lobes. Sequencing of primary and disseminated tumors confirmed the presence of oncogenic driver mutations and their obligate partners. Our findings highlight the importance of postmortem tissue donations as an invaluable resource to accelerate research, potentially leading to improved outcomes for children with aggressive brain tumors.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Histonas/genética , Mutação , Adolescente , Adulto , Animais , Autopsia , Neoplasias Encefálicas/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Lactente , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
11.
PLoS One ; 14(4): e0214723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943272

RESUMO

Chromatin immunoprecipitation and sequencing (ChIP-seq) has been widely used to map DNA-binding proteins, histone proteins and their modifications. ChIP-seq data contains redundant reads termed duplicates, referring to those mapping to the same genomic location and strand. There are two main sources of duplicates: polymerase chain reaction (PCR) duplicates and natural duplicates. Unlike natural duplicates that represent true signals from sequencing of independent DNA templates, PCR duplicates are artifacts originating from sequencing of identical copies amplified from the same DNA template. In analysis, duplicates are removed from peak calling and signal quantification. Nevertheless, a significant portion of the duplicates is believed to represent true signals. Obviously, removing all duplicates will underestimate the signal level in peaks and impact the identification of signal changes across samples. Therefore, an in-depth evaluation of the impact from duplicate removal is needed. Using eight public ChIP-seq datasets from three narrow-peak and two broad-peak marks, we tried to understand the distribution of duplicates in the genome, the extent by which duplicate removal impacts peak calling and signal estimation, and the factors associated with duplicate level in peaks. The three PCR-free histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq data had about 40% duplicates and 97% of them were within peaks. For the other datasets generated with PCR amplification of ChIP DNA, as expected, the narrow-peak marks have a much higher proportion of duplicates than the broad-peak marks. We found that duplicates are enriched in peaks and largely represent true signals, more conspicuous in those with high confidence. Furthermore, duplicate level in peaks is strongly correlated with the target enrichment level estimated using nonredundant reads, which provides the basis to properly allocate duplicates between noise and signal. Our analysis supports the feasibility of retaining the portion of signal duplicates into downstream analysis, thus alleviating the limitation of complete deduplication.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Linhagem Celular Tumoral , Análise de Dados , Conjuntos de Dados como Assunto , Células HeLa , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
12.
Elife ; 82019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30657451

RESUMO

CD4 and CD8 T cells are vital components of the immune system. We found that histone deacetylase 3 (HDAC3) is critical for the development of CD4 T cells, as HDAC3-deficient DP thymocytes generate only CD8SP thymocytes in mice. In the absence of HDAC3, MHC Class II-restricted OT-II thymocytes are redirected to the CD8 cytotoxic lineage, which occurs with accelerated kinetics. Analysis of histone acetylation and RNA-seq reveals that HDAC3-deficient DP thymocytes are biased towards the CD8 lineage prior to positive selection. Commitment to the CD4 or CD8 lineage is determined by whether persistent TCR signaling or cytokine signaling predominates, respectively. Despite elevated IL-21R/γc/STAT5 signaling in HDAC3-deficient DP thymocytes, blocking IL-21R does not restore CD4 lineage commitment. Instead, HDAC3 binds directly to CD8-lineage promoting genes. Thus, HDAC3 is required to restrain CD8-lineage genes in DP thymocytes for the generation of CD4 T cells.


Assuntos
Antígenos CD4/imunologia , Antígenos CD8/imunologia , Linhagem da Célula/genética , Expressão Gênica/fisiologia , Histona Desacetilases/fisiologia , Timócitos/citologia , Animais , Masculino , Camundongos , Transdução de Sinais , Timócitos/imunologia
13.
PLoS One ; 14(10): e0223337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31577830

RESUMO

BACKGROUND: RNA sequencing has been proposed as a means of increasing diagnostic rates in studies of undiagnosed rare inherited disease. Recent studies have reported diagnostic improvements in the range of 7.5-35% by profiling splicing, gene expression quantification and allele specific expression. To-date however, no study has systematically assessed the presence of gene-fusion transcripts in cases of germline disease. Fusion transcripts are routinely identified in cancer studies and are increasingly recognized as having diagnostic, prognostic or therapeutic relevance. Isolated reports exist of fusion transcripts being detected in cases of developmental and neurological phenotypes, and thus, systematic application of fusion detection to germline conditions may further increase diagnostic rates. However, current fusion detection methods are unsuited to the investigation of germline disease due to performance biases arising from their development using tumor, cell-line or in-silico data. METHODS: We describe a tailored approach to fusion candidate identification and prioritization in a cohort of 47 undiagnosed, suspected inherited disease patients. We modify an existing fusion transcript detection algorithm by eliminating its cell line-derived filtering steps, and instead, prioritize candidates using a custom workflow that integrates genomic and transcriptomic sequence alignment, biological and technical annotations, customized categorization logic, and phenotypic prioritization. RESULTS: We demonstrate that our approach to fusion transcript identification and prioritization detects genuine fusion events excluded by standard analyses and efficiently removes phenotypically unimportant candidates and false positive events, resulting in a reduced candidate list enriched for events with potential phenotypic relevance. We describe the successful genetic resolution of two previously undiagnosed disease cases through the detection of pathogenic fusion transcripts. Furthermore, we report the experimental validation of five additional cases of fusion transcripts with potential phenotypic relevance. CONCLUSIONS: The approach we describe can be implemented to enable the detection of phenotypically relevant fusion transcripts in studies of rare inherited disease. Fusion transcript detection has the potential to increase diagnostic rates in rare inherited disease and should be included in RNA-based analytical pipelines aimed at genetic diagnosis.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Proteínas Mutantes Quiméricas/genética , Doenças Raras/diagnóstico , Doenças Raras/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Marcadores Genéticos , Humanos , Lactente , Padrões de Herança , Masculino , Pessoa de Meia-Idade , Fenótipo , Fluxo de Trabalho , Adulto Jovem
14.
Cell Rep ; 29(6): 1675-1689.e9, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693904

RESUMO

Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neurofibromina 1/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Neoplasias do Sistema Nervoso Central/metabolismo , Criança , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Genômica , Humanos , Camundongos , Mutação , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Recidiva , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento do Exoma , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
15.
Diabetes ; 67(5): 911-922, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29500314

RESUMO

Development of cell replacement therapies in diabetes requires understanding of the molecular underpinnings of ß-cell maturation. The circadian clock regulates diverse cellular functions important for regulation of ß-cell function and turnover. However, postnatal ontogenesis of the islet circadian clock and its potential role in ß-cell maturation remain unknown. To address this, we studied wild-type Sprague-Dawley as well as Period1 luciferase transgenic (Per1:LUC) rats to determine circadian clock function, clock protein expression, and diurnal insulin secretion during islet development and maturation process. We additionally studied ß-cell-specific Bmal1-deficient mice to elucidate a potential role of this key circadian transcription factor in ß-cell functional and transcriptional maturation. We report that emergence of the islet circadian clock 1) occurs during the early postnatal period, 2) depends on the establishment of global behavioral circadian rhythms, and 3) leads to the induction of diurnal insulin secretion and gene expression. Islet cell maturation was also characterized by induction in the expression of circadian transcription factor BMAL1, deletion of which altered postnatal development of glucose-stimulated insulin secretion and the associated transcriptional network. Postnatal development of the islet circadian clock contributes to early-life ß-cell maturation and should be considered for optimal design of future ß-cell replacement strategies in diabetes.


Assuntos
Fatores de Transcrição ARNTL/genética , Diferenciação Celular/genética , Ritmo Circadiano/genética , Células Secretoras de Insulina/metabolismo , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Feminino , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Ratos , Ratos Sprague-Dawley , Ratos Wistar
16.
Nat Commun ; 9(1): 631, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434212

RESUMO

CARM1 is an arginine methyltransferase that asymmetrically dimethylates protein substrates on arginine residues. CARM1 is often overexpressed in human cancers. However, clinically applicable cancer therapeutic strategies based on CARM1 expression remain to be explored. Here, we report that EZH2 inhibition is effective in CARM1-expressing epithelial ovarian cancer. Inhibition of EZH2 activity using a clinically applicable small molecule inhibitor significantly suppresses the growth of CARM1-expressing, but not CARM1-deficient, ovarian tumors in two xenograft models and improves the survival of mice bearing CARM1-expressing ovarian tumors. The observed selectivity correlates with reactivation of EZH2 target tumor suppressor genes in a CARM1-dependent manner. Mechanistically, CARM1 promotes EZH2-mediated silencing of EZH2/BAF155 target tumor suppressor genes by methylating BAF155, which leads to the displacement of BAF155 by EZH2. Together, these results indicate that pharmacological inhibition of EZH2 represents a novel therapeutic strategy for CARM1-expressing cancers.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Ovarianas/enzimologia , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Humanos , Camundongos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 9(1): 1978, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773832

RESUMO

Recent studies have offered ample insight into genome-wide expression patterns to define pancreatic ductal adenocarcinoma (PDAC) subtypes, although there remains a lack of knowledge regarding the underlying epigenomics of PDAC. Here we perform multi-parametric integrative analyses of chromatin immunoprecipitation-sequencing (ChIP-seq) on multiple histone modifications, RNA-sequencing (RNA-seq), and DNA methylation to define epigenomic landscapes for PDAC subtypes, which can predict their relative aggressiveness and survival. Moreover, we describe the state of promoters, enhancers, super-enhancers, euchromatic, and heterochromatic regions for each subtype. Further analyses indicate that the distinct epigenomic landscapes are regulated by different membrane-to-nucleus pathways. Inactivation of a basal-specific super-enhancer associated pathway reveals the existence of plasticity between subtypes. Thus, our study provides new insight into the epigenetic landscapes associated with the heterogeneity of PDAC, thereby increasing our mechanistic understanding of this disease, as well as offering potential new markers and therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Metilação de DNA/genética , Conjuntos de Dados como Assunto , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de RNA/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Interdiscip Sci ; 4(3): 173-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23292690

RESUMO

The RGS proteins act as GTPase activating proteins and therefore regulate the lifespan of the active G alpha-GTP by accelerating the GTP hydrolysis. Modulatory residues in the RGS protein are present at the periphery of the RGS domain-G protein interface which is essential to fine-tune the G protein recognition and interaction. The docking energies of the mutant complex and the native complex were compared to see the effects of the mutations in the Modulatory regions. Mutations of Modulatory residues in high-activity RGS proteins lead to loss of function, whereas multiple mutations in the low-activity RGS proteins in critical Modulatory positions lead to complete gain of function. In the RGS proteins the Significant and Conserved core residues with peripheral Modulatory residues selectively optimize G protein recognition and inactivation. The flexibility of the structures of the mutant complexes were seen to be higher and the accessible surface area for the complexes increased after the mutations in the Modulatory residues. Through this approach we analyzed the interaction specificity among the RGS and the G alpha protein, the approach can also be applied to other protein families to find the residues which along with the core binding domain, fine tune the protein recognition and are crucial in the loss or gain of function.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/química , Proteínas RGS/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas RGS/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA