Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(7-8): 2385-2401, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917274

RESUMO

Genomic and post-genomic editors based on CRISPR/Cas systems are widely used in basic research and applied sciences, including human gene therapy. Most genome editing tools are based on the CRISPR/Cas9 type IIA system from Streptococcus pyogenes. Unfortunately, a number of drawbacks have hindered its application in therapeutic approaches, the most serious of which is the relatively high level of off-targets. To overcome this obstacle, various high-fidelity Cas9 variants have been created. However, they show reduced on-target activity compared to wild-type Cas9 possibly due to increased sensitivity to eukaryotic chromatin. Here, we combined a rational approach with random mutagenesis to create a set of new Cas9 variants showing high specificity and increased activity in Saccharomyces cerevisiae yeast. Moreover, a novel mutation in the PAM (protospacer adjacent motif)-interacting Cas9 domain was found, which increases the on-target activity of high-fidelity Cas9 variants while retaining their high specificity. The obtained data suggest that this mutation acts by weakening the eukaryotic chromatin barrier for Cas9 and rearranging the RuvC active center. Improved Cas9 variants should further advance genome and post-genome editing technologies. KEY POINTS: • D147Y and P411T mutations increase the activity of high-fidelity Cas9 variants. • The new L1206P mutation further increases the activity of high-fidelity Cas9 variants. • The L1206P mutation weakens the chromatin barrier for Cas9 editors.


Assuntos
Sistemas CRISPR-Cas , Humanos , Mutagênese , Edição de Genes , Cromatina , RNA Guia de Sistemas CRISPR-Cas
2.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203615

RESUMO

CRISPR/Cas systems are used for genome editing, both in basic science and in biotechnology. However, CRISPR/Cas editors have several limitations, including insufficient specificity leading to "off-targets" and the dependence of activity on chromatin state. A number of highly specific Cas9 variants have now been obtained, but most of them are characterized by reduced activity on eukaryotic chromatin. We identified a spatial cluster of amino acid residues in the PAM-recognizing domain of Streptococcus pyogenes Cas9, whose mutations restore the activity of one of the highly specific forms of SpyCas9 without reducing its activity in Saccharomyces cerevisiae. In addition, one of these new mutations also increases the efficiency of SpyCas9-mediated editing of a site localized on the stable nucleosome. The improved Cas9 variants we obtained, which are capable of editing hard-to-reach regions of the yeast genome, may help in both basic research and yeast biotechnological applications.


Assuntos
Cromatina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Mutagênese , Mutação , Aminoácidos
3.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240439

RESUMO

Torin-2, a synthetic compound, is a highly selective inhibitor of both TORC1 and TORC2 (target of rapamycin) complexes as an alternative to the well-known immunosuppressor, geroprotector, and potential anti-cancer natural compound rapamycin. Torin-2 is effective at hundreds of times lower concentrations and prevents some negative side effects of rapamycin. Moreover, it inhibits the rapamycin-resistant TORC2 complex. In this work, we evaluated transcriptomic changes in D. melanogaster heads induced with lifetime diets containing Torin-2 and suggested possible neuroprotective mechanisms of Torin-2. The analysis included D. melanogaster of three ages (2, 4, and 6 weeks old), separately for males and females. Torin-2, taken at the lowest concentration being tested (0.5 µM per 1 L of nutrient paste), had a slight positive effect on the lifespan of D. melanogaster males (+4% on the average) and no positive effect on females. At the same time, RNA-Seq analysis revealed interesting and previously undiscussed effects of Torin-2, which differed between sexes as well as in flies of different ages. Among the cellular pathways mostly altered by Torin-2 at the gene expression level, we identified immune response, protein folding (heat shock proteins), histone modification, actin cytoskeleton organization, phototransduction and sexual behavior. Additionally, we revealed that Torin-2 predominantly reduced the expression of Srr gene responsible for the conversion of L-serine to D-serine and thus regulating activity of NMDA receptor. Via western blot analysis, we showed than in old males Torin-2 tends to increase the ratio of the active phosphorylated form of ERK, the lowest node of the MAPK cascade, which may play a significant role in neuroprotection. Thus, the complex effect of Torin-2 may be due to the interplay of the immune system, hormonal background, and metabolism. Our work is of interest for further research in the field of NMDA-mediated neurodegeneration.


Assuntos
Drosophila melanogaster , Serina-Treonina Quinases TOR , Masculino , Animais , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirolimo/farmacologia , Sistema Nervoso Central/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(52): 16006-11, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668376

RESUMO

Molecular chaperone Heat Shock Protein 70 (Hsp70) plays an important protective role in various neurodegenerative disorders often associated with aging, but its activity and availability in neuronal tissue decrease with age. Here we explored the effects of intranasal administration of exogenous recombinant human Hsp70 (eHsp70) on lifespan and neurological parameters in middle-aged and old mice. Long-term administration of eHsp70 significantly enhanced the lifespan of animals of different age groups. Behavioral assessment after 5 and 9 mo of chronic eHsp70 administration demonstrated improved learning and memory in old mice. Likewise, the investigation of locomotor and exploratory activities after eHsp70 treatment demonstrated a significant therapeutic effect of this chaperone. Measurements of synaptophysin show that eHsp70 treatment in old mice resulted in larger synaptophysin-immunopositive areas and higher neuron density compared with control animals. Furthermore, eHsp70 treatment decreased accumulation of lipofuscin, an aging-related marker, in the brain and enhanced proteasome activity. The potential of eHsp70 intranasal treatment to protect synaptic machinery in old animals offers a unique pharmacological approach for various neurodegenerative disorders associated with human aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Cognição/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Humanos , Lipofuscina/metabolismo , Longevidade/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos , Microscopia de Fluorescência , Atividade Motora/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Sinaptofisina/metabolismo
5.
Exp Neurol ; 373: 114670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158007

RESUMO

Hsp70 is the main molecular chaperone responsible for cellular proteostasis under normal conditions and for restoring the conformation or utilization of proteins damaged by stress. Increased expression of endogenous Hsp70 or administration of exogenous Hsp70 is known to exert neuroprotective effects in models of many neurodegenerative diseases. In this study, we have investigated the effect of exogenous Hsp70 on recovery from peripheral nerve injury in a model of sciatic nerve transection in rats. It was shown that recombinant Hsp70 after being added to the conduit connecting the ends of the nerve at the site of its extended severance, migrates along the nerve into the spinal ganglion and is retained there at least three days. In animals with the addition of recombinant Hsp70 to the conduit, a decrease in apoptosis in the spinal ganglion cells after nerve rupture, an increase in the level of PTEN-induced kinase 1 (PINK1), an increase in markers of nerve tissue regeneration and a decrease in functional deficit were observed compared to control animals. The obtained data indicate the possibility of using recombinant Hsp70 preparations to accelerate the recovery of patients after neurotrauma.


Assuntos
Fármacos Neuroprotetores , Humanos , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Axotomia , Neurônios/metabolismo , Nervo Isquiático/lesões , Apoptose , Proteínas de Choque Térmico HSP70/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Gânglios Espinais/metabolismo , Regeneração Nervosa
6.
Mol Neurobiol ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429623

RESUMO

Heat shock protein 70 (HSP70) is activated under stress response. Its involvement in cell protection, including energy metabolism and quality control makes it a promising pharmacological target. A strategy to increase HSP70 levels inside the cells is the application of recombinant HSP70. However, cell permeability and functionality of these exogenously applied proteins inside the cells is still disputable. Here, using fluorescence- labeled HSP70, we have studied permeability and distribution of HSP70 inside primary neurons and astrocytes, and how exogenous HSP70 changes mitochondrial metabolism and mitophagy. We have found that exogenous recombinant HSP70 can penetrate the neurons and astrocytes and distributes in mitochondria, lysosomes and in lesser degree in the endoplasmic reticulum. HSP70 increases mitochondrial membrane potential in control neurons and astrocytes, and in fibroblasts of patients with familial Parkinson´s disease (PD) with PINK1 and LRRK2 mutations. Increased mitochondrial membrane potential was associated with higher mitochondrial ROS production and activation of mitophagy. Importantly, preincubation of the cells with HSP70 protected neurons and astrocytes against cell death in a toxic model of PD induced by rotenone, and in the PINK1 and LRRK2 PD human fibroblasts. Thus, exogenous recombinant HSP70 is cell permeable, and acts as endogenous HSP70 protecting cells in the case of toxic model and familial forms of Parkinson's Disease.

7.
Front Biosci (Landmark Ed) ; 28(2): 25, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36866555

RESUMO

In the present era of global warming and dramatically increased environmental pollution posing a threat to animal life, the understanding and manipulation of organisms' resources of stress tolerance is apparently a question of survival. Heat stress and other forms of stressful factors induce a highly organized response of organisms at the cellular level where heat shock proteins (Hsps) and in particular Hsp70 family of chaperones are among the major players in the protection from the environmental challenge. The present review article summarizes the peculiarities of the Hsp70 family of proteins protective functions being a result of many millions of years of adaptive evolution. It discusses the molecular structure and specific details of hsp70 gene regulation in various organisms, living in diverse climatic zones, with a special emphasis on the protective role of Hsp70 in adverse conditions of the environment. The review discusses the molecular mechanisms underlying Hsp70-specific properties that emerged in the course of adaptation to harsh environmental conditions. This review also includes the data on the anti-inflammatory role of Hsp70 and the involvement of endogenous and recombinant Hsp70 (recHsp70) in proteostatic machinery in various pathologies including neurodegenerative ones such as Alzheimer's and Parkinson's diseases in rodent model organisms and humans in vivo and in vitro. Specifically, the role of Hsp70 as an indicator of disease type and severity and the use of recHsp70 in several pathologies are discussed. The review discusses different roles exhibited by Hsp70 in various diseases including the dual and sometimes antagonistic role of this chaperone in various forms of cancer and viral infection including the SARS-Cov-2 case. Since Hsp70 apparently plays an important role in many diseases and pathologies and has significant therapeutic potential there is a dire need to develop cheap recombinant Hsp70 production and further investigate the interaction of externally supplied and endogenous Hsp70 in chaperonotherapy.


Assuntos
Adaptação Fisiológica , Proteínas de Choque Térmico HSP70 , Animais , Humanos , COVID-19 , Proteínas de Choque Térmico HSP70/genética , Doença de Parkinson , Neoplasias , Doença de Alzheimer
8.
Cell Stress Chaperones ; 28(6): 599-619, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755620

RESUMO

Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Epilepsia/metabolismo , Neurônios/metabolismo , Chaperonas Moleculares/uso terapêutico
9.
Biomedicines ; 10(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428502

RESUMO

Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.

10.
BMC Evol Biol ; 11: 74, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21426536

RESUMO

BACKGROUND: Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp) expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters. RESULTS: Although the genomes of both species contain similar numbers of hsp70 genes, the spatial distribution of hsp70 copies differs characteristically. In a population of the eurytopic species Stratiomys singularior, which exists in thermally variable and chemically aggressive (hypersaline) conditions, the hsp70 copies form a tight cluster with approximately equal intergenic distances. In contrast, in a population of the stenotopic Oxycera pardalina that dwells in a stable cold spring, we did not find hsp70 copies in tandem orientation. In this species, the distance between individual hsp70 copies in the genome is very large, if they are linked at all. In O. pardalina we detected the hsp68 gene located next to a hsp70 copy in tandem orientation. Although the hsp70 coding sequences of S. singularior are highly homogenized via conversion, the structure and general arrangement of the hsp70 clusters are highly polymorphic, including gross aberrations, various deletions in intergenic regions, and insertion of incomplete Mariner transposons in close vicinity to the 3'-UTRs. CONCLUSIONS: The hsp70 gene families in S. singularior and O. pardalina evolved quite differently from one another. We demonstrated clear evidence of homogenizing gene conversion in the S. singularior hsp70 genes, which form tight clusters in this species. In the case of the other species, O. pardalina, we found no clear trace of concerted evolution for the dispersed hsp70 genes. Furthermore, in the latter species we detected hsp70 pseudogenes, representing a hallmark of the birth-and-death process.


Assuntos
Dípteros/genética , Ecossistema , Evolução Molecular , Proteínas de Choque Térmico HSP70/genética , Família Multigênica , Animais , Genes de Insetos , Biblioteca Genômica , Regiões Promotoras Genéticas , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Temperatura
11.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210082

RESUMO

Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer's disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , Memória , Neuroproteção , Fatores de Transcrição/metabolismo , Animais , Humanos , Sinapses/metabolismo
12.
Cells ; 11(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011655

RESUMO

The search for effective neuroprotective agents for the treatment of neurotrauma has always been of great interest to researchers around the world. Extracellular heat shock protein 70 (eHsp70) is considered a promising agent to study, as it has been demonstrated to exert a significant neuroprotective activity against various neurodegenerative diseases. We showed that eHsp70 can penetrate neurons and glial cells when added to the incubation medium, and can accumulate in the nuclei of neurons and satellite glial cells after axotomy. eHsp70 reduces apoptosis and necrosis of the glial cells, but not the neurons. At the same time, co-localization of eHsp70 with p53 protein, one of the key regulators of apoptosis, was noted. eHsp70 reduces the level of the p53 protein apoptosis promoter both in glial cells and in the nuclei and cytoplasm of neurons, which indicates its neuroprotective effect. The ability of eHsp70 to reverse the proapoptotic effect of the p53 activator WR1065 may indicate its ability to regulate p53 activity or its proteosome-dependent degradation.


Assuntos
Apoptose , Astacoidea/metabolismo , Axotomia , Proteínas de Choque Térmico HSP70/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Regulação para Baixo , Fator de Transcrição E2F1/metabolismo , Proteínas de Choque Térmico HSP70/isolamento & purificação , Humanos , Mecanorreceptores/metabolismo , Mercaptoetilaminas/farmacologia , Necrose , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
13.
Front Mol Neurosci ; 14: 738930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803604

RESUMO

Audiogenic epilepsy (AE), inherent to several rodent strains is widely studied as a model of generalized convulsive epilepsy. The molecular mechanisms that determine the manifestation of AE are not well understood. In the present work, we compared transcriptomes from the corpora quadrigemina in the midbrain zone, which are crucial for AE development, to identify genes associated with the AE phenotype. Three rat strains without sound exposure were compared: Krushinsky-Molodkina (KM) strain (100% AE-prone); Wistar outbred rat strain (non-AE prone) and "0" strain (partially AE-prone), selected from F2 KM × Wistar hybrids for their lack of AE. The findings showed that the KM strain gene expression profile exhibited a number of characteristics that differed from those of the Wistar and "0" strain profiles. In particular, the KM rats showed increased expression of a number of genes involved in the positive regulation of the MAPK signaling cascade and genes involved in the positive regulation of apoptotic processes. Another characteristic of the KM strain which differed from that of the Wistar and "0" rats was a multi-fold increase in the expression level of the Ttr gene and a significant decrease in the expression of the Msh3 gene. Decreased expression of a number of oxidative phosphorylation-related genes and a few other genes was also identified in the KM strain. Our data confirm the complex multigenic nature of AE inheritance in rodents. A comparison with data obtained from other independently selected AE-prone rodent strains suggests some common causes for the formation of the audiogenic phenotype.

14.
Eur J Pharmacol ; 903: 174150, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33961874

RESUMO

Inhibition of the activity of extracellular signal-regulated kinases (ERK1/2) induced by the activation of the dopamine D2 receptor signalling cascade may be a promising pharmacological target. The aim of this work was to study the involvement of ERK1/2 and dopamine D2 receptor in the mechanism of the anticonvulsant action of valproic acid (VA) and a new benzoylpyridine oxime derivative (GIZH-298), which showed antiepileptic activity in different models of epilepsy. We showed that subchronic exposure to maximal electroshock seizures (MES) for 5 days reduced the density of dopamine D2 receptors in the striatum of mice. GIZH-298 counteracted the decrease in the number of dopamine D2 receptors associated with MES and increased the number of ligand binding sites of dopamine D2 receptors in mice without MES. The affinity of dopamine D2 receptors to the ligand was not changed by GIZH-298. MES caused an increase in ERK1/2 and synapsin I phosphorylation in the striatum while GIZH-298, similar to VA, reduced the levels of both phospho-ERK1/2 and phosphosynapsin I after MES, which correlated with the decrease in the intensity of seizure in mice. In addition, GIZH-298 suppressed ERK1/2 phosphorylation in SH-SY5Y human neuroblastoma cells at therapeutic concentrations, while VA inhibited ERK1/2 phosphorylation in vivo but not in vitro. The data obtained expand the understanding of the mechanisms of action of VA and GIZH-298, which involve regulating the activity of ERK1/2 kinases, probably by modulating dopamine D2 receptors in limbic structures, as well as (in the case of GIZH-298) directly inhibiting of the ERK1/2 cascade.


Assuntos
Anticonvulsivantes/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Convulsões/tratamento farmacológico , Ácido Valproico/farmacologia , Animais , Anticonvulsivantes/administração & dosagem , Linhagem Celular Tumoral , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Eletrochoque/efeitos adversos , Humanos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos , Convulsões/etiologia , Convulsões/metabolismo , Sinapsinas/metabolismo , Ácido Valproico/administração & dosagem , Ácido Valproico/análogos & derivados
15.
Cell Stress Chaperones ; 24(6): 1163-1173, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31664698

RESUMO

Previously, we demonstrated that species of the Stratiomyidae family exhibit higher tolerance to thermal stress in comparison with that of many representatives of Diptera, including Drosophila species. We hypothesized that species of this group inherited the specific structures of their chaperones from an ancestor of the Stratiomyidae family, and this enabled the descendants to colonize various extreme habitats. To explore this possibility, we cloned and expressed in Escherichia coli copies of the Hsp70 genes from Stratiomys singularior, a typical eurythermal species, and Drosophila melanogaster, for comparison. To investigate the thermal sensitivity of the chaperone function of the inducible 70-kDa heat shock proteins from these species, we used an in vitro refolding luciferase assay. We demonstrated that under conditions of elevated temperature, S. singularior Hsp70 exhibited higher reactivation activity in comparison with D. melanogaster Hsp70 and even human Hsp70. Similarly, S. singularior Hsp70 was significantly more thermostable and showed in vitro refolding activity after preheatment at higher temperatures than D. melanogaster paralog. Thermally induced unfolding experiments using differential scanning calorimetry indicated that Hsp70 from both Diptera species is formed by two domains with different thermal stabilities and that the ATP-binding domain of S. singularior is stable at temperatures 4 degrees higher than that of the D. melanogaster paralog. To the best of our knowledge, this study represents the first report that provides direct experimental data indicating that the evolutionary history of a species may result in adaptive changes in the structures of chaperones to enable them to elicit protective functions at extreme environments.


Assuntos
Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/fisiologia , Resposta ao Choque Térmico/fisiologia , Especificidade da Espécie , Animais , Clonagem Molecular , Escherichia coli/genética , Temperatura Alta , Termotolerância/fisiologia
16.
Mol Ecol ; 17(21): 4763-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19140990

RESUMO

A population of Stratiomys japonica, a species belonging to the family Stratiomyidae (Diptera), common name 'soldier flies', occurs in a hot volcanic spring, which is apparently among the most inhospitable environments for animals because of chemical and thermal conditions. Larvae of this species, which naturally often experience temperatures more than 40 degrees C, have constitutively high concentrations of the normally inducible heat-shock protein Hsp70, but very low level of corresponding mRNA. Larvae of three other species of the same family, Stratiomys singularior, Nemotelus bipunctatus and Oxycera pardalina, are confined to different type semi-aquatic habitats with contrasting thermal regime. However, all of them shared the same pattern of Hsp70 expression. Interestingly, heat-shock treatment of S. japonica larvae activates heat-shock factor and significantly induces Hsp70 synthesis, whereas larvae of O. pardalina, a species from constant cold environment, produce significantly less Hsp70 in response to heat shock. Adults of the four species also exhibit lower, but detectable levels of Hsp70 without heat shock. Larvae of all species studied have very high tolerance to temperature stress in comparison with other Diptera species investigated, probably representing an inherent adaptive feature of all Stratiomyidae enabling successful colonization of highly variable and extreme habitats.


Assuntos
Dípteros/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Insetos/metabolismo , Animais , Dípteros/metabolismo , Ecossistema , Genes de Insetos , Proteínas de Choque Térmico HSP70/genética , Temperatura Alta , Proteínas de Insetos/genética , Larva/genética , Larva/metabolismo , Proteômica , Especificidade da Espécie , Regulação para Cima
17.
Genetics ; 173(2): 809-20, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16582443

RESUMO

Heat-shock genes have numerous features that ought to predispose them to insertional mutagenesis via transposition. To elucidate the evolvability of heat-shock genes via transposition, we have exploited a local transposition technique and Drosophila melanogaster strains with EPgy2 insertions near the Hsp70 gene cluster at 87A7 to produce numerous novel EPgy2 insertions into these Hsp70 genes. More than 50% of 45 independent insertions were made into two adjacent nucleotides in the proximal promoter at positions -96 and -97, and no insertions were into a coding or 3'-flanking sequence. All inserted transposons were in inverse orientation to the starting transposon. The frequent insertion into nucleotides -96 and -97 is consistent with the DNase hypersensitivity, absence of nucleosomes, flanking GAGA-factor-binding sites, and nucleotide sequence of this region. These experimental insertions recapitulated many of the phenotypes of natural transposition into Hsp70: reduced mRNA expression, less Hsp70 protein, and decreased inducible thermotolerance. The results suggest that the distinctive features of heat-shock promoters, which underlie the massive and rapid expression of heat-shock genes upon heat shock, also are a source of evolutionary variation on which natural selection can act.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos , Proteínas de Choque Térmico HSP70/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Primers do DNA/genética , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Cell Stress Chaperones ; 22(5): 687-697, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28447215

RESUMO

The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Alzheimers Dis ; 59(4): 1415-1426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759972

RESUMO

Heat shock protein 70, encoded by the HSPA1A gene in humans, is a key component of the machinery that protects neuronal cells from various stress conditions and whose production significantly declines during the course of aging and as a result of several neurodegenerative diseases. Herein, we investigated whether sub-chronic intranasal administration of exogenous Hsp70 (eHsp70) exerts a neuroprotective effect on the temporal cortex and areas of the hippocampus in transgenic 5XFAD mice, a model of Alzheimer's disease. The quantitative analysis of neuronal pathologies in the compared groups, transgenic (Tg) versus non-transgenic (nTg), revealed high level of abnormalities in the brains of transgenic mice. Treatment with human recombinant Hsp70 had profound rejuvenation effect on both neuronal morphology and functional state in the temporal cortex and hippocampal regions in transgenic mice. Hsp70 administration had a smaller, but still significant, effect on the functional state of neurons in non-transgenic mice as well. Using deep sequencing, we identified multiple differentially expressed genes (DEGs) in the hippocampus of transgenic and non-transgenic mice. Furthermore, this analysis demonstrated that eHsp70 administration strongly modulates the spectrum of DEGs in transgenic animals, reverting to a pattern similar to that observed in non-transgenic age-matched mice, which included upregulation of genes responsible for amine transport, transmission of nerve impulses and other pathways that are impaired in 5XFAD mice. Overall, our data indicate that Hsp70 treatment may be an effective therapeutic against old age diseases of the Alzheimer's type.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/administração & dosagem , Neuroprostanos/administração & dosagem , Administração Intranasal/métodos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Presenilina-1/genética
20.
Cell Stress Chaperones ; 21(6): 1055-1064, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27511022

RESUMO

The production of major human heat shock protein Hsp70 (HSPA1A) in a eukaryotic expression system is needed for testing and possible medical applications. In this study, transgenic mice were produced containing wild-type human Hsp70 allele in the vector providing expression in the milk. The results indicated that human Hsp70 was readily expressed in the transgenic animals but did not apparently preserve its intact structure and, hence, it was not possible to purify the protein using conventional isolation techniques. It was suggested that the protein underwent glycosylation in the process of expression, and this quite common modification for proteins expressed in the milk complicated its isolation. To check this possibility, we mutated all presumptive sites of glycosylation and tested the properties of the resulting modified Hsp70 expressed in E. coli. The investigation demonstrated that the modified protein exhibited all beneficial properties of the wild-type Hsp70 and was even superior to the latter for a few parameters. Based on these results, a transgenic mouse strain was obtained which expressed the modified Hsp70 in milk and which was easy to isolate using ATP columns. Therefore, the developed construct can be explored in various bioreactors for reliable manufacture of high quality, uniform, and reproducible human Hsp70 for possible medical applications including neurodegenerative diseases and cancer.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Leite/metabolismo , Animais , Feminino , Proteínas de Choque Térmico HSP70/genética , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Redobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA