Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroinformatics ; 13(2): 245-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25500965

RESUMO

Measures of functional connectivity are commonly employed in neuroimaging research. Among the most popular measures is the Synchronization Likelihood which provides a non-linear estimate of the statistical dependencies between the activity time courses of different brain areas. One aspect which has limited a wider use of this algorithm is the fact that it is very computationally and memory demanding. In the present work we propose new implementations and parallelizations of the Synchronization Likelihood algorithm with significantly better performance both in time and in memory use. As a result both the amount of required computational time is reduced by 3 orders of magnitude and the amount of memory needed for calculations is reduced by 2 orders of magnitude. This allows performing analyses that were not feasible before from a computational standpoint.


Assuntos
Algoritmos , Encéfalo/fisiologia , Sincronização Cortical , Funções Verossimilhança , Animais , Eletroencefalografia , Humanos
2.
PLoS One ; 10(2): e0116532, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25680098

RESUMO

With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.


Assuntos
Fenômenos Eletrofisiológicos , Modelos Neurológicos , Neuritos/fisiologia , Axônios/fisiologia , Fenômenos Biomecânicos , Gráficos por Computador , Bainha de Mielina/fisiologia , Fatores de Tempo , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA