Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 102(2): 651-7, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18767188

RESUMO

The feasibility of a one-step method for the continuous production of astaxanthin by the microalga Haematococcus pluvialis has been verified outdoors. To this end, influence of dilution rate, nitrate concentration in the feed medium, and irradiance on the performance of continuous cultures of H. pluvialis was firstly analyzed indoors in bubble column reactors under daylight cycles, and then outdoors, using a tubular photobioreactor. At the laboratory scale, the behavior of the cultures agreed with that previously recorded in continuous illumination experiences, and attested that the major factors determining biomass and astaxanthin productivity were average irradiance and specific nitrate supply. The rate of astaxanthin accumulation was proportional to the average irradiance inside the culture, provided that a nitrate limiting situation had been established. The accumulation of astaxanthin under daylight cycles was maximal for a specific nitrate input of 0.5 mmol/g day. The recorded performance has been modeled on the basis of previously developed equations, and the validity of the model checked under outdoor conditions. Productivity values for biomass and astaxanthin of 0.7 g/L day and 8.0 mg/L day respectively, were obtained in a pilot scale tubular photobioreactor operating under continuous conditions outdoors. The magnitude of the experimental values, which matched those simulated from the obtained model, demonstrate that astaxanthin can be efficiently produced outdoors in continuous mode through a precise dosage of the specific nitrate input, taking also into consideration the average irradiance inside the culture.


Assuntos
Reatores Biológicos , Clorófitas/metabolismo , Clorófitas/efeitos da radiação , Luz , Clorófitas/crescimento & desenvolvimento , Nitratos/metabolismo , Xantofilas/análise , Xantofilas/biossíntese
2.
Biotechnol Bioeng ; 100(2): 397-402, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18098317

RESUMO

Continuous cultivation of Haematococcus pluvialis under moderate nitrogen limitation represents a straightforward strategy, alternative to the classical two-stage approach, for astaxanthin production by this microalga. Performance of the one-step system has now been validated for more than 40 combinations of dilution rate, nitrate concentration in the feed medium, and incident irradiance, steady state conditions being achieved and maintained in all instances. Specific nitrate input and average irradiance were decisive parameters in determining astaxanthin content of the biomass, as well as productivity of the system. The growth rate of the continuous photoautotrophic cultures was a hyperbolic function of average irradiance. As long as specific nitrate input was above the threshold value of 2.7 mmol/g day, cells performed green and astaxanthin was present at basal levels only. Below the threshold value, under moderate nitrogen limitation conditions, astaxanthin accumulated to reach cellular levels of up to 1.1% of the dry biomass. Increasing irradiance resulted in enhancement of astaxanthin accumulation when nitrogen input was limiting, but never under nitrogen sufficiency. Mean daily productivity values of 20.8 +/- 2.8 mg astaxanthin/L day (1.9 +/- 0.3 g dry biomass/L day) were consistently achieved for a specific nitrate input of about 0.8 mmol/g day and an average irradiance range of 77-110 microE/m(2) s. Models relating growth rate and astaxanthin accumulation with both average irradiance and specific nitrate input fitted accurately experimental data. Simulations provided support to the contention of achieving efficient production of the carotenoid through convenient adjustment of the determining parameters, and yielded productivity estimates for the one-step system higher than 60 mg astaxanthin/L day. The demonstrated capabilities of this production system, as well as its product quality, made it a real alternative to the current two-stage system for the production of astaxanthin-rich biomass.


Assuntos
Técnicas de Cultura de Células/métodos , Clorófitas/metabolismo , Modelos Biológicos , Nitratos/metabolismo , Simulação por Computador , Xantofilas/metabolismo
3.
Biotechnol Bioeng ; 91(7): 808-15, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15937954

RESUMO

The performance of Haematococcus pluvialis in continuous photoautotrophic culture has been analyzed, especially from the viewpoint of astaxanthin production. To this end, chemostat cultures of Haematococcus pluvialis were carried out at constant light irradiance, 1,220 microE/m2.s, and dilution rate, 0.9/d, but varying the nitrate concentration in the feed medium reaching the reactor, from 1.7 to 20.7 mM. Both growth and biomass composition were affected by the nitrate supply. With saturating nitrate, the biomass productivity was high, 1.2 g/L.d, but astaxanthin accumulation did not take place, the C/N ratio of the biomass being 5.7. Under moderate nitrate limitation, biomass productivity was decreased, as also did biomass concentration at steady state, whereas accumulation of astaxanthin developed and the C/N ratio of the biomass increased markedly. Astaxanthin accumulation took place in cells growing and dividing actively, and its extent was enhanced in response to the limitation in nitrate availability, with a recorded maximum for astaxanthin cellular level of 0.8% of dry biomass and of 5.6 mg/L.d for astaxanthin productivity. The viability of a significant continued generation of astaxanthin-rich H. pluvialis cells becomes thus demonstrated, as also does the continuous culture option as an alternative to current procedures for the production of astaxanthin using this microalga. The intensive variable controlling the behavior of the system has been identified as the specific nitrate input, and a mathematical model developed that links growth rate with both irradiance and specific nitrate input. Moreover, a second model for astaxanthin accumulation, also as a function of irradiance and specific nitrate input, was derived. The latter model takes into account that accumulation of astaxanthin is only partially linked to growth, being besides inhibited by excess nitrate. Simulations performed fit experimental data and emphasize the contention that astaxanthin can be efficiently produced under continuous mode by adjustment of the specific nitrate input, predicting even higher values for astaxanthin productivity. The developed models represent a powerful tool for management of such an astaxanthin-generating continuous process, and could allow the development of improved systems for the production of astaxanthin-rich Haematococcus cells.


Assuntos
Técnicas de Cultura de Células , Clorófitas/metabolismo , beta Caroteno/análogos & derivados , Biomassa , Biotecnologia/métodos , Clorófitas/crescimento & desenvolvimento , Simulação por Computador , Meios de Cultura/química , Fermentação , Microbiologia Industrial/métodos , Luz , Nitrogênio , Xantofilas , beta Caroteno/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA