Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 179(3): 604-618, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607512

RESUMO

DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.


Assuntos
DNA/genética , Conformação de Ácido Nucleico , Estruturas R-Loop/genética , RNA/genética , Cromatina/química , Cromatina/genética , DNA/química , Quebras de DNA , Reparo do DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Homeostase/genética , Humanos , RNA/química , Transcrição Gênica
2.
Nat Rev Mol Cell Biol ; 17(9): 553-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27435505

RESUMO

The frequent occurrence of transcription and DNA replication in cells results in many encounters, and thus conflicts, between the transcription and replication machineries. These conflicts constitute a major intrinsic source of genome instability, which is a hallmark of cancer cells. How the replication machinery progresses along a DNA molecule occupied by an RNA polymerase is an old question. Here we review recent data on the biological relevance of transcription-replication conflicts, and the factors and mechanisms that are involved in either preventing or resolving them, mainly in eukaryotes. On the basis of these data, we provide our current view of how transcription can generate obstacles to replication, including torsional stress and non-B DNA structures, and of the different cellular processes that have evolved to solve them.


Assuntos
Replicação do DNA , Transcrição Gênica , Animais , Montagem e Desmontagem da Cromatina , DNA/química , Reparo do DNA , DNA Super-Helicoidal , Instabilidade Genômica , Humanos , RNA/química , Elementos Reguladores de Transcrição
3.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34553761

RESUMO

Transcription is an essential process of DNA metabolism, yet it makes DNA more susceptible to DNA damage. THSC/TREX-2 is a conserved eukaryotic protein complex with a key role in mRNP biogenesis and maturation that prevents genome instability. One source of such instability is linked to transcription, as shown in yeast and human cells, but the underlying mechanism and whether this link is universal is still unclear. To obtain further insight into the putative role of the THSC/TREX-2 complex in genome integrity, we have used Caenorhabditis elegans mutants of the thp-1 and dss-1 components of THSC/TREX-2. These mutants show similar defective meiosis, DNA damage accumulation and activation of the DNA damage checkpoint. However, they differ from each other regarding replication defects, as determined by measuring dUTP incorporation in the germline. Interestingly, this specific thp-1 mutant phenotype can be partially rescued by overexpression of RNase H. Furthermore, both mutants show a mild increase in phosphorylation of histone H3 at Ser10 (H3S10P), a mark previously shown to be linked to DNA-RNA hybrid-mediated genome instability. These data support the view that both THSC/TREX-2 factors prevent transcription-associated DNA damage derived from DNA-RNA hybrid accumulation by separate means.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Exodesoxirribonucleases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/genética , Replicação do DNA/genética , Exodesoxirribonucleases/genética , Instabilidade Genômica/genética , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
4.
Annu Rev Genet ; 47: 1-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23909437

RESUMO

Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.


Assuntos
Instabilidade Genômica , Envelhecimento/genética , Animais , Pontos de Checagem do Ciclo Celular , Sítios Frágeis do Cromossomo/genética , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA de Neoplasias/genética , Células Eucarióticas/citologia , Humanos , Mamíferos/genética , Modelos Genéticos , Mutação , Neoplasias/genética , Conformação de Ácido Nucleico , Estresse Oxidativo , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Fase S , Transcrição Gênica , Leveduras/genética
5.
Mol Cell ; 52(4): 583-90, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24211264

RESUMO

R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , DNA de Cadeia Simples/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Caenorhabditis elegans/genética , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Instabilidade Genômica , Células HeLa , Humanos , Meiose , Mitose , Fases de Leitura Aberta , Fosforilação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica
6.
Mol Cell ; 46(2): 115-24, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541554

RESUMO

RNA:DNA hybrid structures known as R loops were thought to be rare byproducts of transcription. In the last decade, however, accumulating evidence has pointed to a new view in which R loops form more frequently, impacting transcription and threatening genome integrity as a source of chromosome fragility and a potential cause of disease. Not surprisingly, cells have evolved mechanisms to prevent cotranscriptional R loop formation. Here we discuss the factors and cellular processes that control R loop formation and the mechanisms by which R loops may influence gene expression and the integrity of the genome.


Assuntos
Instabilidade Genômica , Transcrição Gênica , DNA/química , Quebras de DNA , Replicação do DNA , Modelos Genéticos , Mutagênese , RNA/química , Recombinação Genética
7.
EMBO Rep ; 13(10): 923-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22878416

RESUMO

R-loops are harmful structures with a negative impact on transcription and recombination during mitosis, but no information exists for meiosis. We used Saccharomyces cerevisiae and Caenorhabditis elegans THO mutants as a tool to determine the consequences of R-loops in meiosis. We found that both S. cerevisiae and C. elegans THO mutants show defective meiosis and an impairment of premeiotic replication as well as DNA-damage accumulation. Importantly, RNase H partially suppressed the replication impairment and the DNA-damage accumulation. We conclude that R-loops can form during meiosis causing replication impairment with deleterious results.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Replicação do DNA/genética , Instabilidade Genômica/genética , Meiose/genética , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/genética , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ribonuclease H/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
8.
Methods Mol Biol ; 2153: 287-293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840787

RESUMO

Meiosis is a specialized reductional cell division responsible for the formation of gametes and the generation of genetic diversity. A fundamental feature of the meiotic process is the initiation of homologous recombination (HR) by the programmed induction of DNA double-strand breaks (DSBs). Caenorhabditis elegans is a powerful experimental organism, which is used to study meiotic processes mainly due to the germline that allows for visualization of sequential stages of meiosis. C. elegans meiosis-programed DSBs are resolved through HR; hence, the germline provides a suitable model to study DSB repair. Classically direct procedures to detect and study intermediate steps in DSB repair by HR in the nematode rely on germline immunofluorescence against the strand exchange protein RAD-51.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Células Germinativas/metabolismo , Rad51 Recombinase/metabolismo , Animais , Feminino , Imunofluorescência , Masculino , Meiose , Reparo de DNA por Recombinação
9.
Nat Commun ; 12(1): 4451, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294712

RESUMO

Identifying how R-loops are generated is crucial to know how transcription compromises genome integrity. We show by genome-wide analysis of conditional yeast mutants that the THO transcription complex, prevents R-loop formation in G1 and S-phase, whereas the Sen1 DNA-RNA helicase prevents them only in S-phase. Interestingly, damage accumulates asymmetrically downstream of the replication fork in sen1 cells but symmetrically in the hpr1 THO mutant. Our results indicate that: R-loops form co-transcriptionally independently of DNA replication; that THO is a general and cell-cycle independent safeguard against R-loops, and that Sen1, in contrast to previously believed, is an S-phase-specific R-loop resolvase. These conclusions have important implications for the mechanism of R-loop formation and the role of other factors reported to affect on R-loop homeostasis.


Assuntos
DNA Fúngico/química , Estruturas R-Loop , RNA Fúngico/química , Ciclo Celular/genética , Ciclo Celular/fisiologia , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genes Fúngicos , Instabilidade Genômica , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estruturas R-Loop/genética , Estruturas R-Loop/fisiologia , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell Rep ; 26(3): 775-787.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650366

RESUMO

Accurate meiotic chromosome segregation critically depends on the formation of inter-homolog crossovers initiated by double-strand breaks (DSBs). Inaccuracies in this process can drive aneuploidy and developmental defects, but how meiotic cells are protected from unscheduled DNA breaks remains unexplored. Here we define a checkpoint response to persistent meiotic DSBs in C. elegans that phosphorylates the synaptonemal complex (SC) to switch repair partner from the homolog to the sister chromatid. A key target of this response is the core SC component SYP-1, which is phosphorylated in response to ionizing radiation (IR) or unrepaired meiotic DSBs. Failure to phosphorylate (syp-16A) or dephosphorylate (syp-16D) SYP-1 in response to DNA damage results in chromosome non-dysjunction, hyper-sensitivity to IR-induced DSBs, and synthetic lethality with loss of brc-1BRCA1. Since BRC-1 is required for inter-sister repair, these observations reveal that checkpoint-dependent SYP-1 phosphorylation safeguards the germline against persistent meiotic DSBs by channelling repair to the sister chromatid.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Caenorhabditis elegans , Meiose
11.
PLoS One ; 11(7): e0160138, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441844

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0052447.].

12.
Nat Rev Cancer ; 15(5): 276-89, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25907220

RESUMO

Genome instability is a hallmark of cancer, and DNA replication is the most vulnerable cellular process that can lead to it. Any condition leading to high levels of DNA damage will result in replication stress, which is a source of genome instability and a feature of pre-cancerous and cancerous cells. Therefore, understanding the molecular basis of replication stress is crucial to the understanding of tumorigenesis. Although a negative aspect of replication stress is its prominent role in tumorigenesis, a positive aspect is that it provides a potential target for cancer therapy. In this Review, we discuss the link between persistent replication stress and tumorigenesis, with the goal of shedding light on the mechanisms underlying the initiation of an oncogenic process, which should open up new possibilities for cancer diagnostics and treatment.


Assuntos
Replicação do DNA/genética , Instabilidade Genômica/genética , Neoplasias/genética , Transformação Celular Neoplásica/genética , Dano ao DNA , Humanos
13.
PLoS One ; 7(12): e52447, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285047

RESUMO

THO is a conserved eukaryotic complex involved in mRNP biogenesis and RNA export that plays an important role in preventing transcription- and RNA-mediated genome instability in mitosis and meiosis. In mammals THO is essential for embryogenesis, which limits our capacity to analyze the physiological relevance of THO during development and in adult organisms. Using Caenorhabditis elegans as a model system we show that the THO complex is essential for mitotic genome integrity and the developmentally regulated mitotic cell cycles occurring during late postembryonic stages.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Mitose , Complexos Multiproteicos/metabolismo , Animais , Tamanho Corporal , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Replicação do DNA , Mutação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Chromosome Res ; 15(5): 607-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17674149

RESUMO

The faithful segregation of homologous chromosomes during meiosis is dependent on the formation of physical connections (chiasma) that form following reciprocal exchange of DNA molecules during meiotic recombination. Here we review the current knowledge in the Caenorhabditis elegans meiotic recombination field. We discuss recent developments that have improved our understanding of the crucial steps that must precede the initiation and propagation of meiotic recombination. We summarize the pathways that impact on meiotic prophase entry and the current understanding of how chromosomes reorganize and interact to promote homologous chromosome pairing and subsequent synapsis. We pay particular attention to the mechanisms that contribute to meiotic DNA double-strand break (DSB) formation and strand exchange processes, and how the C. elegans system compares with other model organisms. Finally, we highlight current and future areas of research that are likely to further our understanding of the meiotic recombination process.


Assuntos
Caenorhabditis elegans/genética , Meiose/genética , Recombinação Genética , Animais , Caenorhabditis elegans/citologia , Pareamento Cromossômico , Quebras de DNA de Cadeia Dupla , Feminino , Genoma Helmíntico , Masculino , Mitose/genética , Modelos Genéticos , Complexo Sinaptonêmico/genética
15.
EMBO J ; 25(10): 2178-88, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16628214

RESUMO

The BRCA1 tumour suppressor and its heterodimeric partner BARD1 constitute an E3-ubiquitin (Ub) ligase and function in DNA repair by unknown mechanisms. We show here that the Caenorhabditis elegans BRCA1/BARD1 (CeBCD) complex possesses an E3-Ub ligase responsible for ubiquitylation at DNA damage sites following ionizing radiation (IR). The DNA damage checkpoint promotes the association of the CeBCD complex with E2-Ub conjugating enzyme, Ubc5(LET-70), leading to the formation of an active E3-Ub ligase on chromatin following IR. Correspondingly, defects in Ubc5(let-70) or the DNA damage checkpoint genes atl-1 or mre-11 abolish CeBCD-dependent ubiquitylation in vivo. Extending these findings to human cells reveals a requirement for UbcH5c, the MRN complex, gamma-H2AX and a co-dependence for ATM and ATR kinases for BRCA1-dependent ubiquitylation at DNA damage sites. Furthermore, we demonstrate that the DNA damage checkpoint promotes the association between BRCA1 and UbcH5c to form an active E3-Ub ligase on chromatin after IR. These data reveal that BRCA1-dependent ubiquitylation is activated at sites of DNA repair by the checkpoint as part of a conserved DNA damage response.


Assuntos
Proteína BRCA1/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dano ao DNA , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Animais , Proteína BRCA1/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Cromatina/metabolismo , Reparo do DNA , Ativação Enzimática , Humanos , Complexos Multiproteicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
EMBO Rep ; 7(10): 1046-51, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964178

RESUMO

Incorporation of uracil during DNA synthesis is among the most common types of endogenously generated DNA damage. Depletion of Caenorhabditis elegans dUTPase by RNA interference allowed us to study the role of DNA damage response (DDR) pathways when responding to high levels of uracil in DNA. dUTPase depletion compromised development, caused embryonic lethality and led to activation of cell-cycle arrest and apoptosis. These phenotypes manifested as a result of processing misincorporated uracil by the uracil-DNA glycosylase UNG-1. Strikingly, abrogation of the clk-2 checkpoint gene rescued lethality and developmental defects, and eliminated cell-cycle arrest and apoptosis after dUTPase depletion. These data show a genetic interaction between UNG-1 and activation of the CLK-2 DDR pathway after uracil incorporation into DNA. Our results indicate that persistent repair intermediates and/or single-stranded DNA formed during repair of misincorporated uracil are tolerated in the absence of the CLK-2 checkpoint in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Reparo do DNA , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Adutos de DNA/efeitos adversos , Dano ao DNA/genética , Embrião não Mamífero , Genes Supressores de Tumor/fisiologia , Modelos Biológicos , Proteínas Mutantes/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/toxicidade , Uracila/efeitos adversos , Uracila-DNA Glicosidase/metabolismo
17.
EMBO J ; 24(24): 4345-55, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16319925

RESUMO

ATM and ATR are key components of the DNA damage checkpoint. ATR primarily responds to UV damage and replication stress, yet may also function with ATM in the checkpoint response to DNA double-strand breaks (DSBs), although this is less clear. Here, we show that atl-1 (Caenorhabditis elegans ATR) and rad-5/clk-2 prevent mitotic catastrophe, function in the S-phase checkpoint and also cooperate with atm-1 in the checkpoint response to DSBs after ionizing radiation (IR) to induce cell cycle arrest or apoptosis via the cep-1(p53)/egl-1 pathway. ATL-1 is recruited to stalled replication forks by RPA-1 and functions upstream of rad-5/clk-2 in the S-phase checkpoint. In contrast, mre-11 and atm-1 are dispensable for ATL-1 recruitment to stalled replication forks. However, mre-11 is required for RPA-1 association and ATL-1 recruitment to DSBs. Thus, DNA processing controlled by mre-11 is important for ATL-1 activation at DSBs but not following replication fork stalling. We propose that atl-1 and rad-5/clk-2 respond to single-stranded DNA generated by replication stress and function with atm-1 following DSB resection.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Dano ao DNA , Replicação do DNA , Fosfotransferases/fisiologia , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Meiose , Microscopia de Fluorescência , Mitose , Modelos Biológicos , Modelos Genéticos , Mutação , Fosfotransferases/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , Radiação Ionizante , Recombinação Genética , Proteínas Repressoras/metabolismo , Fase S , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
18.
J Cell Sci ; 117(Pt 3): 487-506, 2004 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-14679309

RESUMO

Pathogenesis, morphogenesis and cell cycle are connected in the fungal pathogen Ustilago maydis. Here we report the characterization of the catalytic subunit of the cyclin-dependent kinase, encoded by the gene cdk1, and the two B-type cyclins present in this organism, encoded by the genes clb1 and clb2. These cyclins are not redundant and appears to be essential for cell cycle. The analysis of conditional mutants in cyclin genes indicates that Clb1 is required for G1 to S and G2 to M transitions, while Clb2 is specifically required for the onset of mitosis. Both Clb1 and Clb2 carry functional destruction boxes, and expression of derivatives lacking D-boxes arrested cell cycle at a post-replicative stage. High levels of Clb1 generated cells with anomalous DNA content that were hypersensitive to microtubule-destabilizing drugs. In contrast, high levels of Clb2 induce premature entry into mitosis, suggesting that Clb2 is a mitotic inducer in U. maydis. In addition, Clb2 affects morphogenesis, and overexpression of clb2 induces filamentous growth. Furthermore, we have found that appropriate levels of Clb2 cyclin are critical for a successful infection. Mutant strains with half a dose of clb2 or high level of clb2 expression are impaired at distinct stages in the infection process. These data reinforces the connections between cell cycle, morphogenesis and virulence in this smut fungus.


Assuntos
Ciclina B/metabolismo , Ustilago/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Ciclina B/genética , Fase G1/fisiologia , Fase G2/fisiologia , Mitose/fisiologia , Dados de Sequência Molecular , Fase S/fisiologia , Ustilago/citologia , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Virulência
19.
J Cell Sci ; 117(Pt 18): 4143-56, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15316079

RESUMO

Here, we identified a new member of the Fizzy-related family of APC activators, Cru1, which is required for virulence in the corn smut fungus Ustilago maydis. We show that Cru1 promotes the degradation of B-type cyclins in U. maydis. Cells deficient in the Cru1 protein show defects in cell size, adaptation to nutritional conditions and cell separation. We propose that the phenotypes observed are a consequence of the inability of cru1 Delta cells to keep under control the levels of mitotic cyclins during G1. The levels of cru1 mRNA are controlled by nutritional conditions and cAMP levels, implicating the cAMP/protein kinase A pathway in the transmission of environmental conditions to the cell cycle. Cells deficient in Cru1 function are severely impaired in their ability to infect corn plants. This low rate of plant infection is caused by several defects. First, a low level of expression of the pheromone-encoding gene, mfa1, resulted in a low frequency of dikaryotic infective filament formation. Second, proliferation of fungal cells inside the plant is also affected, resulting in the inability to induce tumors in plants. Finally, the formation and germination of teliospores is also impaired. Our results support the hypothesis that virulence and cell cycle are connected in U. maydis. We propose that along the infection process, Cru1 is required to keep the appropriate G1 length necessary for the adaptation of fungal cells to host environment through the different stages of the plant infection.


Assuntos
AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Complexos Ubiquitina-Proteína Ligase/genética , Ustilago/genética , Zea mays/microbiologia , Adaptação Fisiológica/fisiologia , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , DNA Complementar/análise , DNA Complementar/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Fase G2/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Nitrogênio/metabolismo , Feromônios/genética , Feromônios/metabolismo , RNA Mensageiro/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ustilago/citologia , Ustilago/patogenicidade , Virulência
20.
Eukaryot Cell ; 2(3): 494-500, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12796294

RESUMO

In the corn smut fungus Ustilago maydis, pathogenic development is initiated when two compatible haploid cells fuse and form the infectious dikaryon. Mating is dependent on pheromone recognition by compatible cells. In this report, we set out to evaluate the relationship between the cell cycle and the pheromone response in U. maydis. To achieve this, we designed a haploid pheromone-responsive strain that is able to faithfully reproduce the native mating response in nutrient-rich medium. Addition of synthetic pheromone to the responsive strain induces the formation of mating structures, and this response is abolished by mutations in genes encoding components of the pheromone signal transduction cascade. After recognition of pheromone, U. maydis cells arrest the cell cycle in a postreplicative stage. Visualization of the nucleus and microtubule organization indicates that the arrest takes place at the G(2) phase. Chemical-induced cell cycle arrest and release in the presence of pheromone further support this conclusion.


Assuntos
Fase G2 , Feromônios/fisiologia , Ustilago/fisiologia , DNA/análise , Regulação Fúngica da Expressão Gênica , Haploidia , Hidroxiureia/farmacologia , Mutação , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA/análise , Reprodução , Ustilago/citologia , Ustilago/genética , Ustilago/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA