Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(11): 3557-3578, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38465958

RESUMO

Modern crops exhibit diverse sensitivities to ammonium as the primary nitrogen source, influenced by environmental factors such as external pH and nutrient availability. Despite its significance, there is currently no systematic classification of plant species based on their ammonium sensitivity. We conducted a meta-analysis of 50 plant species and present a new classification method based on the comparison of fresh biomass obtained under ammonium and nitrate nutrition. The classification uses the natural logarithm of the biomass ratio as the size effect indicator of ammonium sensitivity. This numerical parameter is associated with critical factors for nitrogen demand and form preference, such as Ellenberg indicators and the repertoire of nitrogen transporters for ammonium and nitrate uptake. Finally, a comparative analysis of the developmental and metabolic responses, including hormonal balance, is conducted in two species with divergent ammonium sensitivity values in the classification. Results indicate that nitrate has a key role in counteracting ammonium toxicity in species with a higher abundance of genes encoding NRT2-type proteins and fewer of those encoding the AMT2-type proteins. Additionally, the study demonstrates the reliability of the phytohormone balance and methylglyoxal content as indicators for anticipating ammonium toxicity.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/metabolismo , Concentração de Íons de Hidrogênio , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Adaptação Fisiológica
2.
BMC Plant Biol ; 11: 83, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575190

RESUMO

BACKGROUND: In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4+ (aq) which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. RESULTS: Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. CONCLUSIONS: This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.


Assuntos
Produtos Agrícolas/metabolismo , Nitratos/metabolismo , Isótopos de Nitrogênio/análise , Raízes de Plantas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Amônia/metabolismo , Análise de Variância , Transporte Biológico , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/metabolismo , Isótopos de Nitrogênio/metabolismo , Brotos de Planta/metabolismo
3.
Risk Anal ; 28(4): 1003-19, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18662300

RESUMO

In this article, we present a methodology to assess the risk incurred by a participant in an activity involving danger of injury. The lack of high-quality historical data for the case considered prevented us from constructing a sufficiently detailed statistical model. It was therefore decided to generate a risk assessment model based on expert judgment. The methodology is illustrated in a real case context: the assessment of risk to participants in a San Fermin bull-run in Pamplona (Spain). The members of the panel of "experts on the bull-run" represented very different perspectives on the phenomenon: runners, surgeons and other health care personnel, journalists, civil defense workers, security staff, organizers, herdsmen, authors of books on the bull-run, etc. We consulted 55 experts. Our methodology includes the design of a survey instrument to elicit the experts' views and the statistical and mathematical procedures used to aggregate their subjective opinions.


Assuntos
Medição de Risco , Assunção de Riscos , Corrida , Animais , Bovinos , Humanos , Espanha , Ferimentos e Lesões
4.
Front Plant Sci ; 6: 574, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322051

RESUMO

The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 µmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 µmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA