Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(2): e14101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37795744

RESUMO

BACKGROUND AND AIMS: We aimed to assess the associations of exposure to air pollutants and standard and advanced lipoprotein measures, in a nationwide sample representative of the adult population of Spain. METHODS: We included 4647 adults (>18 years), participants in the national, cross-sectional, population-based di@bet.es study, conducted in 2008-2010. Standard lipid measurements were analysed on an Architect C8000 Analyzer (Abbott Laboratories SA). Lipoprotein analysis was made by an advanced 1 H-NMR lipoprotein test (Liposcale®). Participants were assigned air pollution concentrations for particulate matter <10 µm (PM10 ), <2.5 µm (PM2.5 ) and nitrogen dioxide (NO2 ), corresponding to the health examination year, obtained by modelling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). RESULTS: In multivariate linear regression models, each IQR increase in PM10 , PM2.5 and NO2 was associated with 3.3%, 3.3% and 3% lower levels of HDL-c and 1.3%, 1.4% and 1.1% lower HDL particle (HDL-p) concentrations (p < .001 for all associations). In multivariate logistic regression, there was a significant association between PM10 , PM2.5 and NO2 concentrations and the odds of presenting low HDL-c (<40 mg/dL), low HDL-p (

Assuntos
Poluentes Atmosféricos , Poluição do Ar , Masculino , Adulto , Humanos , Dióxido de Nitrogênio/análise , Espanha/epidemiologia , Estudos Transversais , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Lipídeos , Lipoproteínas/análise , Exposição Ambiental/efeitos adversos
2.
Environ Health ; 21(1): 76, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978396

RESUMO

BACKGROUND: Recent reports have suggested that air pollution may impact thyroid function, although the evidence is still scarce and inconclusive. In this study we evaluated the association of exposure to air pollutants to thyroid function parameters in a nationwide sample representative of the adult population of Spain. METHODS: The Di@bet.es study is a national, cross-sectional, population-based survey which was conducted in 2008-2010 using a random cluster sampling of the Spanish population. The present analyses included 3859 individuals, without a previous thyroid disease diagnosis, and with negative thyroid peroxidase antibodies (TPO Abs) and thyroid-stimulating hormone (TSH) levels of 0.1-20 mIU/L. Participants were assigned air pollution concentrations for particulate matter <2.5µm (PM2.5) and Nitrogen Dioxide (NO2), corresponding to the health examination year, obtained by means of modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). TSH, free thyroxine (FT4), free triiodothyronine (FT3) and TPO Abs concentrations were analyzed using an electrochemiluminescence immunoassay (Modular Analytics E170 Roche). RESULTS: In multivariate linear regression models, there was a highly significant negative correlation between PM2.5 concentrations and both FT4 (p<0.001), and FT3 levels (p<0.001). In multivariate logistic regression, there was a significant association between PM2.5 concentrations and the odds of presenting high TSH [OR 1.24 (1.01-1.52) p=0.043], lower FT4 [OR 1.25 (1.02-1.54) p=0.032] and low FT3 levels [1.48 (1.19-1.84) p=<0.001] per each IQR increase in PM2.5 (4.86 µg/m3). There was no association between NO2 concentrations and thyroid hormone levels. No significant heterogeneity was seen in the results between groups of men, pre-menopausal and post-menopausal women. CONCLUSIONS: Exposures to PM2.5 in the general population were associated with mild alterations in thyroid function.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos Transversais , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Material Particulado/análise , Glândula Tireoide/química , Hormônios Tireóideos , Tireotropina
3.
Sci Rep ; 11(1): 19702, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611240

RESUMO

Exposure to air particulate matter has been linked with hypertension and blood pressure levels. The metabolic risks of air pollution could vary according to the specific characteristics of each area, and has not been sufficiently evaluated in Spain. We analyzed 1103 individuals, participants in a Spanish nationwide population based cohort study (di@bet.es), who were free of hypertension at baseline (2008-2010) and completed a follow-up exam of the cohort (2016-2017). Cohort participants were assigned air pollution concentrations for particulate matter < 10 µm (PM10) and < 2.5 µm (PM2.5) during follow-up (2008-2016) obtained through modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). Mean and SD concentrations of PM10 and PM2.5 were 20.17 ± 3.91 µg/m3 and 10.83 ± 2.08 µg/m3 respectively. During follow-up 282 cases of incident hypertension were recorded. In the fully adjusted model, compared with the lowest quartile of PM10, the multivariate weighted ORs (95% CIs) for developing hypertension with increasing PM10 exposures were 0.82 (0.59-1.14), 1.28 (0.93-1.78) and 1.45 (1.05-2.01) in quartile 2, 3 and 4 respectively (p for a trend of 0.003). The corresponding weighted ORs according to PM2.5 exposures were 0.80 (0.57-1.13), 1.11 (0.80-1.53) and 1.48 (1.09-2.00) (p for trend 0.004). For each 5-µg/m3 increment in PM10 and PM2.5 concentrations, the odds for incident hypertension increased 1.22 (1.06-1.41) p = 0.007 and 1.39 (1.07-1.81) p = 0.02 respectively. In conclusion, our study contributes to assessing the impact of particulate pollution on the incidence of hypertension in Spain, reinforcing the need for improving air quality as much as possible in order to decrease the risk of cardiometabolic disease in the population.


Assuntos
Exposição Ambiental/efeitos adversos , Hipertensão/epidemiologia , Hipertensão/etiologia , Material Particulado/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos , Poluição do Ar , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Razão de Chances , Vigilância em Saúde Pública , Medição de Risco , Fatores de Risco , Espanha/epidemiologia , Adulto Jovem
4.
Atmos Chem Phys ; 17(17): 10435-10465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147711

RESUMO

The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the "base case" simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with timescale considerations and error modelling using the available error fields of temperature, wind speed, and NO x concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the timescale and the fields that the two models are most sensitive to. The representation of planetary boundary layer (PBL) dynamics is pivotal to both models. In particular, (i) the fluctuations slower than ~ 1.5 days account for 70-85 % of the mean square error of the full (undecomposed) ozone time series; (ii) a recursive, systematic error with daily periodicity is detected, responsible for 10-20 % of the quadratic total error; (iii) errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in summer in both Europe and North America); (iv) the CMAQ ozone error has a weak/negligible dependence on the errors in NO2, while the error in NO2 significantly impacts the ozone error produced by Chimere; (v) the response of the models to variations of anthropogenic emissions and boundary conditions show a pronounced spatial heterogeneity, while the seasonal variability of the response is found to be less marked. Only during the winter season does the zeroing of boundary values for North America produce a spatially uniform deterioration of the model accuracy across the majority of the continent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA