Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 142(4): 601-12, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20723760

RESUMO

Fibrillar protein aggregates are the major pathological hallmark of several incurable, age-related, neurodegenerative disorders. These aggregates typically contain aggregation-prone pathogenic proteins, such as amyloid-beta in Alzheimer's disease and alpha-synuclein in Parkinson's disease. It is, however, poorly understood how these aggregates are formed during cellular aging. Here we identify an evolutionarily highly conserved modifier of aggregation, MOAG-4, as a positive regulator of aggregate formation in C. elegans models for polyglutamine diseases. Inactivation of MOAG-4 suppresses the formation of compact polyglutamine aggregation intermediates that are required for aggregate formation. The role of MOAG-4 in driving aggregation extends to amyloid-beta and alpha-synuclein and is evolutionarily conserved in its human orthologs SERF1A and SERF2. MOAG-4/SERF appears to act independently from HSF-1-induced molecular chaperones, proteasomal degradation, and autophagy. Our results suggest that MOAG-4/SERF regulates age-related proteotoxicity through a previously unexplored pathway, which will open up new avenues for research on age-related, neurodegenerative diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Senescência Celular , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas do Tecido Nervoso/química , Peptídeos/metabolismo , Proteínas/química , alfa-Sinucleína/metabolismo
2.
Mol Cell ; 47(3): 359-70, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22742832

RESUMO

Bim is a proapoptotic BH3-only Bcl-2 family member. In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this interaction is facilitated by LC8. Bim bridges the Beclin 1-LC8 interaction and thereby inhibits autophagy by mislocalizing Beclin 1 to the dynein motor complex. Starvation, an autophagic stimulus, induces Bim phosphorylation, which abrogates LC8 binding to Bim, leading to dissociation of Bim and Beclin 1. Our data suggest that Bim switches locations between apoptosis-inactive/autophagy-inhibitory and apoptosis-active/autophagy-permissive sites.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Proteína Beclina-1 , Células Cultivadas , Células HeLa , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética
3.
Mol Cell ; 43(1): 19-32, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21726807

RESUMO

Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKß. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2-Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKß and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1-Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.


Assuntos
Autofagia , Óxido Nítrico/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Quinase I-kappa B/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/metabolismo , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos , NG-Nitroarginina Metil Éster/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
4.
J Neuroinflammation ; 15(1): 19, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338785

RESUMO

BACKGROUND: Neuroprotection with cannabinoids in Parkinson's disease (PD) has been afforded predominantly with antioxidant or anti-inflammatory cannabinoids. In the present study, we investigated the anti-inflammatory and neuroprotective properties of VCE-003.2, a quinone derivative of the non-psychotrophic phytocannabinoid cannabigerol (CBG), which may derive its activity at the peroxisome proliferator-activated receptor-γ (PPARγ). The compound is also an antioxidant. METHODS: We evaluated VCE-003.2 in an in vivo [mice subjected to unilateral intrastriatal injections of lipopolysaccharide (LPS)] model of PD, as well as in in vitro (LPS-exposed BV2 cells and M-213 cells treated with conditioned media generated from LPS-exposed BV2 cells) cellular models. The type of interaction of VCE-003.2 at the PPARγ receptor was furtherly investigated in bone marrow-derived human mesenchymal stem cells (MSCs) and sustained with transcriptional assays and in silico docking studies. RESULTS: VCE-003.2 has no activity at the cannabinoid receptors, a fact that we confirmed in this study using competition studies. The administration of VCE-003.2 to LPS-lesioned mice attenuated the loss of tyrosine hydroxylase (TH)-containing nigrostriatal neurons and, in particular, the intense microgliosis provoked by LPS in the substantia nigra, measured by Iba-1/Cd68 immunostaining. The analysis by qPCR of proinflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS) in the striatum showed they were markedly elevated by the LPS lesion and strongly reduced by the treatment with VCE-003.2. The effects of VCE-003.2 in LPS-lesioned mice implied the activation of PPARγ receptors, as they were attenuated when VCE-003.2 was co-administered with the PPARγ inhibitor T0070907. We then moved to some in vitro approaches, first to confirm the anti-inflammatory profile of VCE-003.2 in cultured BV2 cells exposed to LPS. VCE-003.2 was able to attenuate the synthesis and release of TNF-α and IL-1ß, as well as the induction of iNOS and cyclooxygenase-2 (COX-2) elicited by LPS in these cells. However, we found such effects were not reversed by GW9662, another classic PPARγ antagonist. Next, we investigated the neuroprotective effects of VCE-003.2 in cultured M-213 neuronal cells exposed to conditioned media generated from LPS-exposed cultured BV2 cells. VCE-003.2 reduced M-213 cell death, but again, such effects were not reversed by T0070907. Using docking analysis, we detected that VCE-003.2 binds both the canonical and the alternative binding sites in the PPARγ ligand-binding pocket (LBP). Functional assays further showed that T0070907 almost abolished PPARγ transcriptional activity induced by rosiglitazone (RGZ), but it did not affect the activity of VCE-003.2 in a Gal4-Luc system. However, T0070907 inhibited the effects of RGZ and VCE-003.2 on the expression of PPARγ-dependent genes upregulated in MSCs. CONCLUSIONS: We have demonstrated that VCE-003.2 is neuroprotective against inflammation-driven neuronal damage in an in vivo model of PD and in in vitro cellular models of neuroinflammation. Such effects might involve PPARγ receptors, although in silico and in vitro experiments strongly suggest that VCE-003.2 targets PPARγ by acting through two binding sites at the LBP, one that is sensitive to T0070907 (canonical binding site) and other that is not affected by this PPARγ antagonist (alternative binding site).


Assuntos
Canabinoides/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , PPAR gama/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Quinonas/uso terapêutico , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Canabinoides/farmacologia , Linhagem Celular , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Quinonas/farmacologia
5.
Physiol Rev ; 90(4): 1383-435, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20959619

RESUMO

(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.


Assuntos
Autofagia/fisiologia , Células Eucarióticas/metabolismo , Mamíferos/fisiologia , Animais , Células Eucarióticas/patologia , Humanos , Fagossomos/metabolismo , Transdução de Sinais , Estresse Fisiológico
6.
Hum Mol Genet ; 22(22): 4528-44, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23804751

RESUMO

Inhibition of the insulin/insulin-like growth factor signalling pathway increases lifespan and protects against neurodegeneration in model organisms, and has been considered as a potential therapeutic target. This pathway is upstream of mTORC1, a negative regulator of autophagy. Thus, we expected autophagy to be activated by insulin-like growth factor-1 (IGF-1) inhibition, which could account for many of its beneficial effects. Paradoxically, we found that IGF-1 inhibition attenuates autophagosome formation. The reduced amount of autophagosomes present in IGF-1R depleted cells can be, at least in part, explained by a reduced formation of autophagosomal precursors at the plasma membrane. In particular, IGF-1R depletion inhibits mTORC2, which, in turn, reduces the activity of protein kinase C (PKCα/ß). This perturbs the actin cytoskeleton dynamics and decreases the rate of clathrin-dependent endocytosis, which impacts autophagosome precursor formation. Finally, with important implications for human diseases, we demonstrate that pharmacological inhibition of the IGF-1R signalling cascade reduces autophagy also in zebrafish and mice models. The novel link we describe here has important consequences for the interpretation of genetic experiments in mammalian systems and for evaluating the potential of targeting the IGF-1R receptor or modulating its signalling through the downstream pathway for therapeutic purposes under clinically relevant conditions, such as neurodegenerative diseases, where autophagy stimulation is considered beneficial.


Assuntos
Autofagia/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Macrolídeos/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Semin Cell Dev Biol ; 21(7): 691-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20188203

RESUMO

Autophagy is an intracellular degradation process responsible for the clearance of most long-lived proteins and organelles. Cytoplasmic components are enclosed by double-membrane autophagosomes, which subsequently fuse with lysosomes for degradation. Autophagy dysfunction may contribute to the pathology of various neurodegenerative disorders, which manifest abnormal protein accumulation. As autophagy induction enhances the clearance of aggregate-prone intracytoplasmic proteins that cause neurodegeneration (like mutant huntingtin, tau and ataxin 3) and confers cytoprotective roles in cell and animal models, upregulating autophagy may be a tractable therapeutic strategy for diseases caused by such proteins. Here, we will review the molecular machinery of autophagy and its role in neurodegenerative diseases. Drugs and associated signalling pathways that may be targeted for pharmacological induction of autophagy will also be discussed.


Assuntos
Autofagia , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Animais , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais
8.
Hum Mol Genet ; 19(17): 3413-29, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20566712

RESUMO

Many neurodegenerative diseases exhibit protein accumulation and increased oxidative stress. Therapeutic strategies include clearing aggregate-prone proteins by enhancing autophagy or decreasing oxidative stress with antioxidants. Many autophagy-inducing stimuli increase reactive oxygen species (ROS), raising concerns that the benefits of autophagy up-regulation may be counterbalanced by ROS toxicity. Here we show that not all autophagy inducers significantly increase ROS. However, many antioxidants inhibit both basal and induced autophagy. By blocking autophagy, antioxidant drugs can increase the levels of aggregate-prone proteins associated with neurodegenerative disease. In fly and zebrafish models of Huntington's disease, antioxidants exacerbate the disease phenotype and abrogate the rescue seen with autophagy-inducing agents. Thus, the potential benefits in neurodegenerative diseases of some classes of antioxidants may be compromised by their autophagy-blocking properties.


Assuntos
Antioxidantes/administração & dosagem , Autofagia/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Peptídeos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Drosophila , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/embriologia , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
9.
Eur J Pharmacol ; 895: 173875, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460612

RESUMO

Given that neuronal degeneration in Alzheimer's disease (AD) is caused by the combination of multiple neurotoxic insults, current directions in the research of novel therapies to treat this disease attempts to design multitarget strategies that could be more effective than the simply use of acetylcholinesterase inhibitors; currently, the most used therapy for AD. One option, explored recently, is the synthesis of new analogues of cannabinoids that could competitively inhibit the acetylcholinesterase (AChE) enzyme and showing the classic neuroprotective profile of cannabinoid compounds. In this work, molecular docking has been used to design some cannabinoid analogues with such multitarget properties, based on the similarities of donepezil and Δ9-tetrahydrocannabinol. The analogues synthesized, compounds 1 and 2, demonstrated to have two interesting characteristics in different in vitro assays: competitive inhibition of AChE and competitive antagonism at the CB1/CB2 receptors. They are highly lipophilic, highlighting that they could easily reach the CNS, and apparently presented a low toxicity. These results open the door to the synthesis of new compounds for a more effective treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Sítios de Ligação , Encéfalo/enzimologia , Encéfalo/patologia , Antagonistas de Receptores de Canabinoides/síntese química , Canabinoides/síntese química , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Desenho Assistido por Computador , Desenho de Fármacos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Humanos , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/química , Ligação Proteica , Conformação Proteica , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
10.
J Neural Transm Suppl ; (73): 269-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20411785

RESUMO

This study was designed to examine the type of changes experienced by the CB1 receptor, a key element of the cannabinoid signaling system, in the basal ganglia of different mouse mutants generated by deletion of specific genes associated with the development of Parkinson's disease in humans [PARK1 (alpha-synuclein), PARK2 (parkin) or PARK6 (PINK1)]. We observed that CB1 receptor-mRNA levels were significantly reduced in the caudate-putamen in the three models under examination when animals were analyzed at early phases (< or = 12 months of age). This decrease was, in general, associated with a reduction in CB1 receptor binding in the substantia nigra and the globus pallidus, particularly in the case of alpha-synuclein-deficient mice. By contrast, both parameters, mRNA levels and binding for the CB1 receptor, showed an elevation in the same areas when animals were analyzed at older ages, mainly in the case of the CB1 receptor binding in the substantia nigra. In summary, our data revealed the existence of a biphasic response for CB1 receptors, with losses at early phases, when dopaminergic dysfunction is possibly the major event that takes place, followed by upregulatory responses at advanced phases characterized by the occurrence of evident nigrostriatal pathology including neuronal death in some cases.


Assuntos
Gânglios da Base/metabolismo , Regulação para Baixo/genética , Receptor CB1 de Canabinoide/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Regulação para Cima/genética , Fatores Etários , Animais , Autorradiografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/genética , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Ubiquitina-Proteína Ligases/classificação , alfa-Sinucleína/deficiência
11.
Br J Pharmacol ; 176(10): 1361-1369, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29797438

RESUMO

Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Assuntos
Encéfalo/patologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Endocanabinoides/metabolismo , Neurônios/patologia , Oligodendroglia/patologia , Animais , Encéfalo/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores de Canabinoides/metabolismo
12.
BMC Mol Biol ; 9: 65, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18638371

RESUMO

BACKGROUND: this study set out to examine the effects of the treatment with 1,25-dihydroxyvitamin D3 (1,25D3) [150 IU/Kg (3.75 microg/Kg) one a day, for 15 days] to non-diabetic rats and in rats rendered diabetic by a single injection of streptozotocin [65 mg/kg]. RESULTS: treatment with 1,25D3 to non-diabetic rats did not affect the biochemical parameters measured in the plasma and urine of these animals. Likewise, insulin receptor expression in the kidney, liver, or adipose tissue and insulin-stimulated glucose transport in adipocytes from these animals were not affected either. Treatment with 1,25D3 to streptozotocin-induced diabetic rats did not correct the hyperglycemia, hypoinsulinemia, glycosuria or ketonemia induced by the diabetes, although it partially reversed the over-expression of the insulin receptor gene in the liver and adipose tissue, without altering the normal expression of this gene in the kidney. These effects were accompanied by a normalization of the number of insulin receptors without altering receptor affinity but improving the insulin response to glucose transport in adipocytes from these diabetic animals. Moreover, a computer search in the rat insulin receptor promoter revealed the existence of two candidate vitamin D response element (VDRE) sequences located at -256/-219 bp and -653/-620 bp, the first overlapped by three and the second by four AP-2-like sites. CONCLUSION: these genomic actions of 1,25D3 could represent beneficial effects associated with the amelioration of diabetes via mechanisms that possibly involve direct transcriptional activation of the rat insulin receptor gene. The candidate VDREs identified may respond to 1,25D3 via activation of the vitamin D receptor, although this remains to be investigated.


Assuntos
Calcitriol/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Sequência de Bases , Sequência Consenso , Diabetes Mellitus Experimental/metabolismo , Expressão Gênica/efeitos dos fármacos , Genômica , Glucose/metabolismo , Técnicas In Vitro , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
13.
Mol Cell Endocrinol ; 286(1-2 Suppl 1): S91-6, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18291574

RESUMO

CB2 receptors, the so-called peripheral cannabinoid receptor type, were first described in the immune system, but they have been recently identified in the brain in healthy conditions and, in particular, after several types of cytotoxic stimuli. Specifically, CB2 receptors were identified in microglial cells, astrocytes and, to a lesser extent, in certain subpopulations of neurons. Given the lack of psychoactivity demonstrated by selective CB2 receptor agonists, this receptor becomes an interesting target for the treatment of neurological diseases, in particular, the case of certain neurodegenerative disorders in which induction/up-regulation of CB2 receptors has been already demonstrated. These disorders include Alzheimer's disease, Huntington's chorea, amyotrophic lateral sclerosis and others. Interestingly, in experimental models of these disorders, the activation of CB2 receptors has been related to a delayed progression of neurodegenerative events, in particular, those related to the toxic influence of microglial cells on neuronal homeostasis. The present article will review the evidence supporting that CB2 receptors might represent a key element in the endogenous response against different types of cytotoxic events, and that this receptor type may be a clinically promising target for the control of brain damage in neurodegenerative disorders.


Assuntos
Canabinoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos
14.
Neurosci Lett ; 438(1): 10-3, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18457923

RESUMO

While recent studies have shown that the blockade of cannabinoid CB(1) receptors might be beneficial to alleviate the motor inhibition typical of Parkinson's disease (PD), the neurochemical substrates for this effect remain elusive. Here we have carried out microdialysis experiments to determine whether the effects of rimonabant, a selective antagonist of CB(1) receptors, might be associated with changes in striatal glutamate release in a rat model of PD generated by intracerebroventricular injection of 6-hydroxydopamine. Our data demonstrate that the treatment with rimonabant slightly increased striatal glutamate release in control rats, although this effect was only evident with the highest dose of rimonabant tested (1mg/kg). However, the increase in glutamate release was much more marked in the parkinsonian rats where similar changes were observed at a dose of 1 and 0.1mg/kg, exactly the same dose that relieved motor inhibition in previous behavioral studies. In summary, the potential of rimonabant to act as a possible antihypokinetic agent in parkinsonian rats seems to be related to enhanced glutamate release from excitatory afferents to the striatum. This observation is of potential clinical interest, particularly for those parkinsonian patients that exhibit a poor response to classic levodopa treatment.


Assuntos
Corpo Estriado/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Piperidinas/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Pirazóis/farmacologia , Animais , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Masculino , Microdiálise , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Oxidopamina , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Simpatolíticos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
15.
J Med Entomol ; 55(2): 468-471, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29045705

RESUMO

A zoonotic, opportunistic out-break of tropical rat mite Ornithonyssus bacoti [Acari: Macronyssidae; Ornithonyssus bacoti (Hirst)] in an animal facility, is described. Immunocompetent mice [Mus musculus (Linnaeus)] and rat [Rattus norvegicus (Berkenhout)] strains in a conventional health status facility suffered from scratching and allopecia and staff members suffered from pruritic, erythemato-papular lesions, presumed to be allergic in origin. O. bacoti was identified and treatment with a 0.1% ivermectin solution led to its complete erradication. Safety assessment revealed no signs of acute toxicity in any animal strain. Following this inexpensive strategy, 7 wk after the initial dose, samples were negative for the presence of acari. At the time of this report, 26 months after diagnosis, O. bacoti remains undetected.


Assuntos
Acaricidas/uso terapêutico , Surtos de Doenças/veterinária , Ivermectina/uso terapêutico , Infestações por Ácaros/veterinária , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/prevenção & controle , Animais , Erradicação de Doenças , Feminino , Masculino , Camundongos , Infestações por Ácaros/epidemiologia , Infestações por Ácaros/prevenção & controle , Ácaros , Prurido/parasitologia , Ratos , Espanha/epidemiologia , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
16.
Mol Neurobiol ; 36(1): 82-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17952653

RESUMO

Cannabinoids have been proposed as clinically promising neuroprotective molecules, as they are capable to reduce excitotoxicity, calcium influx, and oxidative injury. They are also able to decrease inflammation by acting on glial processes that regulate neuronal survival and to restore blood supply to injured area by reducing the vasoconstriction produced by several endothelium-derived factors. Through one or more of these processes, cannabinoids may provide neuroprotection in different neurodegenerative disorders including Parkinson's disease and Huntington's chorea, two chronic diseases that are originated as a consequence of the degeneration of specific nuclei of basal ganglia, resulting in a deterioration of the control of movement. Both diseases have been still scarcely explored at the clinical level for a possible application of cannabinoids to delay the progressive degeneration of the basal ganglia. However, the preclinical evidence seems to be solid and promising. There are two key mechanisms involved in the neuroprotection by cannabinoids in experimental models of these two disorders: first, a cannabinoid receptor-independent mechanism aimed at producing a decrease in the oxidative injury and second, an induction/upregulation of cannabinoid CB2 receptors, mainly in reactive microglia, that is capable to regulate the influence of these glial cells on neuronal homeostasis. Considering the relevance of these preclinical data and the lack of efficient neuroprotective strategies in both disorders, we urge the development of further studies that allow that the promising expectatives generated for these molecules progress from the present preclinical evidence till a real clinical application.


Assuntos
Doenças dos Gânglios da Base/tratamento farmacológico , Canabinoides/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Canabinoides/farmacologia , Humanos , Doença de Huntington/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico
17.
Brain Res ; 1134(1): 162-70, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17196181

RESUMO

We have recently demonstrated that two plant-derived cannabinoids, Delta9-tetrahydrocannabinol and cannabidiol (CBD), are neuroprotective in an animal model of Parkinson's disease (PD), presumably because of their antioxidant properties. To further explore this issue, we examined the neuroprotective effects of a series of cannabinoid-based compounds, with more selectivity for different elements of the cannabinoid signalling system, in rats with unilateral lesions of nigrostriatal dopaminergic neurons caused by local application of 6-hydroxydopamine. We used the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA), the CB2 receptor agonist HU-308, the non-selective agonist WIN55,212-2, and the inhibitors of the endocannabinoid inactivation AM404 and UCM707, all of them administered i.p. Daily administration of ACEA or WIN55,212-2 did not reverse 6-hydroxydopamine-induced dopamine (DA) depletion in the lesioned side, whereas HU-308 produced a small recovery that supports a possible involvement of CB2 but not CB1 receptors. AM404 produced a marked recovery of 6-hydroxydopamine-induced DA depletion and tyrosine hydroxylase deficit in the lesioned side. Possibly, this is caused by the antioxidant properties of AM404, which are derived from the presence of a phenolic group in its structure, rather than by the capability of AM404 to block the endocannabinoid transporter, because UCM707, another transporter inhibitor devoid of antioxidant properties, did not produce the same effect. None of these effects were observed in non-lesioned contralateral structures. We also examined the timing for the effect of CBD to provide neuroprotection in this rat model of PD. We found that CBD, as expected, was able to recover 6-hydroxydopamine-induced DA depletion when it was administered immediately after the lesion, but it failed to do that when the treatment started 1 week later. In addition, the effect of CBD implied an upregulation of mRNA levels for Cu,Zn-superoxide dismutase, a key enzyme in endogenous defenses against oxidative stress. In summary, our results indicate that those cannabinoids having antioxidant cannabinoid receptor-independent properties provide neuroprotection against the progressive degeneration of nigrostriatal dopaminergic neurons occurring in PD. In addition, the activation of CB2 (but not CB1) receptors, or other additional mechanisms, might also contribute to some extent to the potential of cannabinoids in this disease.


Assuntos
Canabinoides/farmacologia , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Receptores de Canabinoides/metabolismo , Animais , Antioxidantes/farmacologia , Ácidos Araquidônicos/farmacologia , Benzoxazinas , Agonistas de Receptores de Canabinoides , Antagonistas de Receptores de Canabinoides , Canabinoides/uso terapêutico , Modelos Animais de Doenças , Dopamina/metabolismo , Furanos/farmacologia , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Técnicas de Cultura de Órgãos , Estresse Oxidativo/fisiologia , Oxidopamina , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Alcamidas Poli-Insaturadas/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/genética , Simpatolíticos
18.
Brain Res ; 1073-1074: 209-19, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16412990

RESUMO

Recent evidence suggest that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinson's disease (PD). In the present study, we have explored the motor effects of rimonabant, a selective antagonist of CB1 receptors, in a rat model of PD generated by an intracerebroventricular injection of 6-hydroxydopamine. Compared with rats subjected to unilateral injection of this toxin in the medial forebrain bundle, this model allows nigral dopaminergic neurons be symmetrically affected. Dose-response studies with 6-hydroxydopamine revealed that the application of 200 microg per animal caused hypokinetic signs (decreased ambulatory activity, increased inactivity, and reduced motor coordination), which paralleled several signs of degeneration of nigrostriatal dopaminergic neurons (dopamine depletion in the caudate-putamen, and decreased mRNA levels for tyrosine hydroxylase and superoxide dismutase-1 and -2 in the substantia nigra). In these conditions, the degree of hypokinesia and dopaminergic degeneration may be considered moderate, comparable to the disturbances occurring in early and middle stages of PD in humans, a period that might be appropriate to test the effects of rimonabant. There is also degeneration of other dopaminergic pathways out of the basal ganglia, but this does not appear to interfere significantly with the hypokinetic profile of these rats. Higher doses of 6-hydroxydopamine elevated significantly animal mortality and lower doses failed in general to reproduce motor inhibition. Like other animal models of PD, these rats exhibited an increase in the density of CB(1) receptors in the substantia nigra, which is indicative of the expected overactivity of the cannabinoid transmission in this disease and supports the potential of CB1 receptor blockade to attenuate hypokinesia associated with nigral cell death. Thus, the injection of 0.1 mg/kg of rimonabant partially attenuated the hypokinesia shown by these animals with no effects in control rats, whereas higher doses (0.5-1.0 mg/kg) were not effective. We also found that the antihypokinetic effects of low doses of rimonabant did not influence the dopamine deficits of these animals, as well as it did not modify GABA or glutamate transmission in the caudate-putamen. In summary, rimonabant may have potential antihypokinetic activity in moderate parkinsonism at low doses, but this effect is not related to changes in dopaminergic, GABAergic, or glutamatergic transmission in the striatum. Therefore, the elucidation of the neurochemical substrate involved in this effect remains a major challenge for the future.


Assuntos
Doença de Parkinson/tratamento farmacológico , Piperidinas/uso terapêutico , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Adrenérgicos/toxicidade , Análise de Variância , Animais , Autorradiografia/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Química Encefálica/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroquímica/métodos , Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hibridização In Situ/métodos , Injeções Intraventriculares/métodos , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Teste de Desempenho do Rota-Rod/métodos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Eur J Med Chem ; 112: 66-80, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26890113

RESUMO

Previous studies have investigated the relevance and structure-activity relationships (SARs) of pyrazole derivatives in relation with cannabinoid receptors, and the series of tricyclic 1,4-dihydroindeno[1,2-c]pyrazoles emerged as potent CB2 receptor ligands. In the present study, novel 1,4-dihydroindeno[1,2-c]pyrazole and 1H-benzo[g]indazole carboxamides containing a cyclopropyl or a cyclohexyl substituent were designed and synthesized to evaluate the influence of these structural modifications towards CB1 and CB2 receptor affinities. Among these derivatives, compound 15 (6-cyclopropyl-1-(2,4-dichlorophenyl)-N-(adamantan-1-yl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide) showed the highest CB2 receptor affinity (Ki = 4 nM) and remarkable selectivity (KiCB1/KiCB2 = 2232), whereas a similar affinity, within the nM range, was seen for the fenchyl derivative (compound 10: Ki = 6 nM), for the bornyl analogue (compound 14: Ki = 38 nM) and, to a lesser extent, for the aminopiperidine derivative (compound 6: Ki = 69 nM). Compounds 10 and 14 were also highly selective for the CB2 receptor (KiCB1/KiCB2 > 1000), whereas compound 6 was relatively selective (KiCB1/KiCB2 = 27). The four compounds were also subjected to GTPγS binding analysis showing antagonist/inverse agonist properties (IC50 for compound 14 = 27 nM, for 15 = 51 nM, for 10 = 80 nM and for 6 = 294 nM), and this activity was confirmed for the three more active compounds in a CB2 receptor-specific in vitro bioassay consisting in the quantification of prostaglandin E2 release by LPS-stimulated BV2 cells, in the presence and absence of WIN55,212-2 and/or the investigated compounds. Modelling studies were also conducted with the four compounds, which conformed with the structural requirements stated for the binding of antagonist compounds to the human CB2 receptor.


Assuntos
Pirazóis/química , Pirazóis/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Humanos , Ligantes , Simulação de Acoplamento Molecular , Pirazóis/síntese química , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
20.
Leuk Res ; 29(1): 79-87, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15541479

RESUMO

In this study, we demonstrate that 17beta-estradiol (E(2)) inhibits human insulin receptor (IR) gene expression in a dose- and time-dependent manner in U-937 human promonocytic cells. Using cells transfected with the -1819 to -271 bp fragment of the human IR promoter (wild type promoter) and treated with E(2), we show that this repression is regulated at the transcriptional level. The steroid was also found to diminish the insulin responsiveness of the cells in terms of cell survival, DNA synthesis, glucose transport, and glucose oxidation, this last effect possibly involving reduced phosphatidylinositol 3-kinase (PI3-kinase) activity. These data provide new information on the molecular mechanisms of estrogen-inducing insulin resistance in human cells.


Assuntos
Estradiol/farmacologia , Regulação da Expressão Gênica , Receptor de Insulina/genética , Transcrição Gênica , Sobrevivência Celular , Células Cultivadas , DNA/biossíntese , Relação Dose-Resposta a Droga , Glucose/metabolismo , Humanos , Resistência à Insulina , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA