Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Sports Med ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925152

RESUMO

Jump actions are common in several sports, and its performance is related to a myriad of biomechanical and physiological factors, with links to athletic performance and imbalances. Currently, a valid, field-based, easy-to-use tool to assess the quality of an explosive jump movement, similar to the required sports movements, is unavailable. Thus, the present study aimed to design and validate a field-based, easy-to-use tool that can be used to assess the quality of movement during an explosive single-leg countermovement jump (SL-CMJ). Ten experts participated in the content validation process of the checklist including item relevance, definition accuracy, and scoring adequacy. Content validity was measured using the Aikens V format. The checklist included the items "Foot orientation", "Knee valgus/varus", "Internal/external hip flexed orientation", "Pelvis tilt", "Thorax tilt", "Thorax rotation", "Foot pronation/supination", "Asymmetrical hip", and "Lumbo-pelvic association". The items achieved a 0.60-0.99 in relevance, 0.70-1.00 in definition accuracy, and 0.80-0.83 in scoring adequacies in the Aikens V proof. The results from the context validation process suggest that the tool may be appropriate to assess athletes' quality of explosive movement. Furthermore, the results derived from such assessment may help to design better and safer training interventions.

2.
Pharmaceutics ; 15(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376198

RESUMO

Neural tissue engineering presents a compelling technological breakthrough in restoring brain function, holding immense promise. However, the quest to develop implantable scaffolds for neural culture that fulfill all necessary criteria poses a remarkable challenge for material science. These materials must possess a host of desirable characteristics, including support for cellular survival, proliferation, and neuronal migration and the minimization of inflammatory responses. Moreover, they should facilitate electrochemical cell communication, display mechanical properties akin to the brain, emulate the intricate architecture of the extracellular matrix, and ideally allow the controlled release of substances. This comprehensive review delves into the primary requisites, limitations, and prospective avenues for scaffold design in brain tissue engineering. By offering a panoramic overview, our work aims to serve as an essential resource, guiding the creation of materials endowed with bio-mimetic properties, ultimately revolutionizing the treatment of neurological disorders by developing brain-implantable scaffolds.

3.
Sports (Basel) ; 11(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624130

RESUMO

BACKGROUND: Plyometric jump training (PJT) encompasses a range of different exercises that may offer advantages over other training methods to improve human physical capabilities (HPC). However, no systematic scoping review has analyzed either the role of the type of PJT exercise as an independent prescription variable or the gaps in the literature regarding PJT exercises to maximize HPC. OBJECTIVE: This systematic scoping review aims to summarize the published scientific literature and its gaps related to HPC adaptations (e.g., jumping) to PJT, focusing on the role of the type of PJT exercise as an independent prescription variable. METHODS: Computerized literature searches were conducted in the PubMed, Web of Science, and SCOPUS electronic databases. Design (PICOS) framework: (P) Healthy participants of any age, sex, fitness level, or sports background; (I) Chronic interventions exclusively using any form of PJT exercise type (e.g., vertical, unilateral). Multimodal interventions (e.g., PJT + heavy load resistance training) will be considered only if studies included two experimental groups under the same multimodal intervention, with the only difference between groups being the type of PJT exercise. (C) Comparators include PJT exercises with different modes (e.g., vertical vs. horizontal; vertical vs. horizontal combined with vertical); (O) Considered outcomes (but not limited to): physiological, biomechanical, biochemical, psychological, performance-related outcomes/adaptations, or data on injury risk (from prevention-focused studies); (S) Single- or multi-arm, randomized (parallel, crossover, cluster, other) or non-randomized. RESULTS: Through database searching, 10,546 records were initially identified, and 69 studies (154 study groups) were included in the qualitative synthesis. The DJ (counter, bounce, weighted, and modified) was the most studied type of jump, included in 43 study groups, followed by the CMJ (standard CMJ or modified) in 19 study groups, and the SJ (standard SJ or modified) in 17 study groups. Strength and vertical jump were the most analyzed HPC outcomes in 38 and 54 studies, respectively. The effects of vertical PJT versus horizontal PJT on different HPC were compared in 21 studies. The effects of bounce DJ versus counter DJ (or DJ from different box heights) on different HPC were compared in 26 studies. CONCLUSIONS: Although 69 studies analyzed the effects of PJT exercise type on different HPC, several gaps were identified in the literature. Indeed, the potential effect of the PJT exercise type on a considerable number of HPC outcomes (e.g., aerobic capacity, flexibility, asymmetries) are virtually unexplored. Future studies are needed, including greater number of participants, particularly in groups of females, senior athletes, and youths according to maturity. Moreover, long-term (e.g., >12 weeks) PJT interventions are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA