RESUMO
PURPOSE OF REVIEW: The present review will highlight recent reports supporting the relevance of extracellular vesicles to the musculoskeletal system in health and disease. RECENT FINDINGS: Preserving the health of the musculoskeletal system is important to maintain a good quality of life, and the bone-muscle crosstalk is crucial in this regard. This latter is largely mediated by extracellular vesicles released by the different cell populations residing in muscle and bone, which deliver cargoes, microRNAs, and proteins being the most relevant ones, to target cells. Extracellular vesicles could be exploited as therapeutic tools, in view of their resistance to destruction in the biological fluid and of the possibility to be functionalized according to the need. Extracellular vesicles are recognized as crucial players in the bone-muscle cross-talk. Additional studies however are required to refine their use as biomarkers of early alterations of the musculoskeletal system, and as potential therapeutic tools.
Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculoesqueléticas/metabolismo , Osso e Ossos/metabolismo , Biomarcadores/metabolismo , Sistema Musculoesquelético/metabolismoRESUMO
INTRODUCTION: Cachexia is a complex multi-factorial syndrome characterized by anorexia, inflammation, body, and skeletal muscle wasting. Early diagnosis and intervention via a multimodal approach combining nutritional counseling, exercise, and pharmacological agents is advisable. However, no effective treatment options are currently available in the clinical setting. AREAS COVERED: The present work is a review of emerging treatment options for cancer cachexia, including mainly, but not only, pharmacological approaches. The main interest is on drugs currently investigated in clinical trials; however, promising pre-clinical options are presented as well. Data were collected using PubMed and ClinicalTrials.gov databases, including studies of the last 20 years and active clinical trials. EXPERT OPINION: The lack of effective therapeutic approaches against cachexia results from several issues, among which a reduced number of studies focused on new drugs. Furthermore, the translation of pre-clinical results in the clinical practice is a hard mission, and it must be considered whether drugs target cachexia as a consequence of acting directly on the tumor. Indeed, dissecting antineoplastics from direct anti-cachexia effects is needed to elucidate the mechanisms of action of specific drugs. This is necessary for their inclusion into multimodal approaches, which nowadays are considered the best way to tackle cachexia.
Assuntos
Neoplasias , Humanos , Neoplasias/complicações , Caquexia/tratamento farmacológico , Caquexia/etiologia , Exercício Físico , AconselhamentoRESUMO
BACKGROUND: Small non-coding (snc)RNAs, including microRNAs and P-element induced wimpy testis (PIWI)-interacting-RNAs (piRNAs), crucially regulate gene expression in both physiological and pathological conditions. In particular, some muscle-specific microRNAs (myomiRs) have been involved in the pathogenesis of cancer-induced muscle wasting. The aims of the present study were (i) to profile sncRNAs in both skeletal muscle and plasma of gastrointestinal cancer patients and (ii) to investigate the association among differentially expressed sncRNAs and the level of muscularity at body composition analysis. METHODS: Surgical patients with gastrointestinal cancer or benign disease were recruited. Blood samples and muscle biopsies (rectus abdominis) were collected during surgery. Low muscularity patients were those at the lowest tertile of skeletal muscle index (SMI; CT-scan), whereas moderate/high muscularity patients were in the middle and highest SMI tertiles. SncRNAs in the muscle were assessed by RNAseq, circulating microRNAs were evaluated by qPCR. RESULTS: Cancer patients (n = 25; 13 females, 52%) showed a mean age of 71.6 ± 11.2 years, a median body weight loss of 4.2% and a mean BMI of 27.0 ± 3.2 kg/m2 . Control group (n = 15; 9 females, 60%) showed a mean age 58.1 ± 13.9 years and a mean BMI of 28.0 ± 4.3 kg/m2 . In cancer patients, the median L3-SMI (cm2 /m2 ) was 42.52 (34.42; 49.07). Males showed a median L3-SMI of 46.08 (41.17-51.79) and females a median L3-SMI of 40.77 (33.73-42.87). Moderate-high and low muscularity groups included 17 and 8 patients, respectively. As for circulating microRNAs, miR-21-5p and miR-133a-3p were up-regulated in patients compared with controls, whereas miR-15b-5p resulted down-regulated in the same comparison (about 30% of control values). Sample clustering by muscularity and sex revealed increased miR-133a-3p and miR-206 only in moderate-high muscularity males. SncRNA profiling in the muscle identified 373 microRNAs and 190 piRNAs (72.5% and 18.7% of raw reads, respectively). As for microRNAs, 10 were up-regulated, and 56 were down-regulated in cancer patients versus controls. Among the 24 dysregulated piRNAs, the majority were down-regulated, including the top two most expressed piRNAs in the muscle (piR-12790 and piR-2106). Network analysis on validated mRNA targets of down-regulated microRNAs revealed miR-15b-5p, miR-106a-5p and miR-106b-5p as main interactors of genes related to ubiquitin ligase/transferase activities. CONCLUSIONS: These results show dysregulation of both muscle microRNAs and piRNAs in cancer patients compared with controls, the former following a sex-specific pattern. Changes in circulating microRNAs are associated with the degree of muscularity rather than body weight loss.
Assuntos
MicroRNA Circulante , Neoplasias Gastrointestinais , MicroRNAs , Pequeno RNA não Traduzido , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto , Pequeno RNA não Traduzido/genética , RNA de Interação com Piwi , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Redução de PesoRESUMO
BACKGROUND: Cachexia, a syndrome frequently occurring in cancer patients, is characterized by muscle wasting, altered energy and protein metabolism and impaired myogenesis. Tumour-derived microvesicles (TMVs) containing proteins, messenger RNAs (mRNAs), and non-coding RNAs could contribute to cancer-induced muscle wasting. METHODS: Differential ultracentrifugation was used to isolate TMVs from the conditioned medium of Lewis lung carcinoma and C26 colon carcinoma cell cultures. TMVs were added to the culture medium of C2C12 myoblasts and myotubes for 24-48-72 h, and the effects on protein and energy metabolism were assessed. TMVs were also isolated from the blood of C26-bearing mice. MicroRNA (miR) profile of TMVs was obtained by RNA-seq and validated by digital drop PCR. Selected miRs were overexpressed in C2C12 myoblasts to assess the effects on myogenic differentiation. RESULTS: Differentiation was delayed in C2C12 myoblasts exposed to TMVs, according to reduced expression of myosin heavy chain (MyHC; about 62% of controls at Day 4) and myogenin (about 68% of controls at Day 4). As for myotubes, TMVs did not affect the expression of MyHC, while revealed able to modulate mitochondria and oxidative metabolism. Indeed, reduced mRNA levels of PGC-1α (C = 1 ± 0.2, TMV = 0.57 ± 0.06, normalized fold change, P < 0.05) and Cytochrome C (C = 1 ± 0.2, TMV = 0.65 ± 0.04, normalized fold change, P < 0.05), associated with increased BNIP3 expression (C = 1 ± 0.1, TMV = 1.29 ± 0.2, normalized fold change, P < 0.05), were observed, suggesting reduced mitochondrial biogenesis/amount and enhanced mitophagy. These changes were paralleled by decreased oxygen consumption (C = 686.9 ± 44 pmol/min, TMV = 552.25 ± 24 pmol/min, P < 0.01) and increased lactate levels (C = 0.0063 ± 0.00045 nmol/µL, TMV = 0.0094 ± 0.00087 nmol/µL, P < 0.01). A total of 118 miRs were found in MVs derived from the plasma of the C26 hosts; however, only three of them were down-regulated (RNA-seq): miR-181a-5p (-1.46 fold change), miR-375-3p (-2.52 fold change), and miR-455-5p (-3.87 fold change). No correlation could be observed among miRs in the MVs obtained from the blood of the C26 host and those released by C26 cells in the culture medium. Overexpression of miR-148a-3p and miR-181a-5p in C2C12 myoblasts revealed the ability to impinge on the mRNA levels of Myf5, Myog, and MyHC (Myh4 and Myh7). CONCLUSIONS: These results show that in C2C12 cultures, TMVs are able to affect both differentiation and the mitochondrial system. Such effects could be related to TMV-contained miRs.
Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Animais , Linhagem Celular , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Neoplasias/metabolismoRESUMO
Skeletal muscle repair is accomplished by satellite cells (MuSCs) in cooperation with interstitial stromal cells (ISCs), but the relationship between the function of these cells and the metabolic state of myofibers remains unclear. This study reports an altered proportion of MuSCs and ISCs (including adipogenesis-regulatory cells; Aregs) induced by the transgenic overexpression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in the myofibers (MCK-PGC-1α mice). Although PGC-1α-driven increase of MuSCs does not accelerate muscle regeneration, myogenic progenitors isolated from MCK-PGC-1α mice and transplanted into intact and regenerating muscles are more prone to fuse with recipient myofibers than those derived from wild-type donors. Moreover, both young and aged MCK-PGC-1α animals exhibit reduced perilipin-positive areas when challenged with an adipogenic stimulus, demonstrating low propensity to accumulate adipocytes within the muscle. Overall, these results unveil that increased PGC-1α expression in the myofibers favors pro-myogenic and anti-adipogenic cell populations in the skeletal muscle.
RESUMO
The management of cancer patients is frequently complicated by the occurrence of cachexia. This is a complex syndrome that markedly impacts on quality of life as well as on tolerance and response to anticancer treatments. Loss of body weight, wasting of both adipose tissue and skeletal muscle and reduced survival rates are among the main features of cachexia. Skeletal muscle wasting has been shown to depend, mainly at least, on the induction of protein degradation rates above physiological levels. Such hypercatabolic pattern is driven by overactivation of different intracellular proteolytic systems, among which those dependent on ubiquitin-proteasome and autophagy. Selective rather than bulk degradation of altered proteins and organelles was also proposed to occur. Within the picture described above, the muscle is frequently considered a sort of by-stander tissue where external stimuli, directly or indirectly, can poise protein metabolism toward a catabolic setting. By contrast, several observations suggest that the muscle reacts to the wasting drive imposed by cancer growth by activating different compensatory strategies that include anabolic capacity, the activation of autophagy and myogenesis. Even if muscle response is eventually ill-fated, its occurrence supports the idea that in the presence of appropriate treatments the development of cancer-induced wasting might not be an ineluctable event in tumor hosts.