Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563179

RESUMO

Alzheimer's disease (AD) and other tauopathies are common neurodegenerative diseases in older adults; in contrast, abnormal tau deposition in neurons and glial cells occurs only exceptionally in children. Sarkosyl-insoluble fractions from sporadic AD (sAD) containing paired helical filaments (PHFs) were inoculated unilaterally into the thalamus in newborn and three-month-old wild-type C57BL/6 mice, which were killed at different intervals from 24 h to six months after inoculation. Tau-positive cells were scanty and practically disappeared at three months in mice inoculated at the age of a newborn. In contrast, large numbers of tau-positive cells, including neurons and oligodendrocytes, were found in the thalamus of mice inoculated at three months and killed at the ages of six months and nine months. Mice inoculated at the age of newborn and re-inoculated at the age of three months showed similar numbers and distribution of positive cells in the thalamus at six months and nine months. This study shows that (a) differences in tau seeding between newborn and young adults may be related to the ratios between 3Rtau and 4Rtau, and the shift to 4Rtau predominance in adults, together with the immaturity of connections in newborn mice, and (b) intracerebral inoculation of sAD PHFs in newborn mice does not protect from tau seeding following intracerebral inoculation of sAD PHFs in young/adult mice.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Encéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Hum Mol Genet ; 28(1): 31-50, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219847

RESUMO

Alpha-synuclein (aSyn) is a central player in Parkinson's disease (PD) but the precise molecular mechanisms underlying its pathogenicity remain unclear. It has recently been suggested that nuclear aSyn may modulate gene expression, possibly via interactions with DNA. However, the biological behavior of aSyn in the nucleus and the factors affecting its transcriptional role are not known. Here, we investigated the mechanisms underlying aSyn-mediated transcription deregulation by assessing its effects in the nucleus and the impact of phosphorylation in these dynamics. We found that aSyn induced severe transcriptional deregulation, including the downregulation of important cell cycle-related genes. Importantly, transcriptional deregulation was concomitant with reduced binding of aSyn to DNA. By forcing the nuclear presence of aSyn in the nucleus (aSyn-NLS), we found the accumulation of high molecular weight aSyn species altered gene expression and reduced toxicity when compared with the wild-type or exclusively cytosolic protein. Interestingly, nuclear localization of aSyn, and the effect on gene expression and cytotoxicity, was also modulated by phosphorylation on serine 129. Thus, we hypothesize that the role of aSyn on gene expression and, ultimately, toxicity, may be modulated by the phosphorylation status and nuclear presence of different aSyn species. Our findings shed new light onto the subcellular dynamics of aSyn and unveil an intricate interplay between subcellular location, phosphorylation and toxicity, opening novel avenues for the design of future strategies for therapeutic intervention in PD and other synucleinopathies.


Assuntos
alfa-Sinucleína/metabolismo , alfa-Sinucleína/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Proteínas de Ligação a DNA , Regulação para Baixo , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Sinais de Localização Nuclear/fisiologia , Doença de Parkinson/patologia , Fosforilação , Cultura Primária de Células , Ratos
3.
Int J Mol Sci ; 17(2): 206, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26861289

RESUMO

Polymorphisms in certain inflammatory-related genes have been identified as putative differential risk factors of neurodegenerative diseases with abnormal protein aggregates, such as sporadic Alzheimer's disease (AD) and sporadic Parkinson's disease (sPD). Gene expression studies of cytokines and mediators of the immune response have been made in post-mortem human brain samples in AD, sPD, sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2, Pick's disease (PiD), progressive supranuclear palsy (PSP) and frontotemporal lobar degeneration linked to mutation P301L in MAPT Frontotemporal lobar degeneration-tau (FTLD-tau). The studies have disclosed variable gene regulation which is: (1) disease-dependent in the frontal cortex area 8 in AD, sPD, sCJD MM1 and VV2, PiD, PSP and FTLD-tau; (2) region-dependent as seen when comparing the entorhinal cortex, orbitofrontal cortex, and frontal cortex area 8 (FC) in AD; the substantia nigra, putamen, FC, and angular gyrus in PD, as well as the FC and cerebellum in sCJD; (3) genotype-dependent as seen considering sCJD MM1 and VV2; and (4) stage-dependent as seen in AD at different stages of disease progression. These observations show that regulation of inflammation is much more complicated and diverse than currently understood, and that new therapeutic approaches must be designed in order to selectively act on specific targets in particular diseases and at different time points of disease progression.


Assuntos
Predisposição Genética para Doença , Inflamação/complicações , Inflamação/genética , Doenças Neurodegenerativas/etiologia , Transcriptoma , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/etiologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Diagnóstico Diferencial , Progressão da Doença , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/diagnóstico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas , RNA Mensageiro/genética , Fatores de Risco , Tauopatias/diagnóstico , Tauopatias/etiologia , Tauopatias/metabolismo
4.
Neuropathol Appl Neurobiol ; 41(7): 926-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25597950

RESUMO

AIMS: To explore alterations in the expression of genes encoding enzymes involved in purine metabolism in Parkinson's disease (PD) brains as purines are the core of the DNA, RNA, nucleosides and nucleotides which participate in a wide variety of crucial metabolic pathways. METHODS: Analysis of mRNA using real-time quantitative PCR of 22 genes involved in purine metabolism in the substantia nigra, putamen and cerebral cortex area 8 in PD at different stages of disease progression, and localization of selected purine metabolism-related enzymes with immunohistochemistry. RESULTS: Reduced expression of adenylate kinase 2 (AKA2), AK3, AK4, adenine phosphoribosyltransferase, ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1), ENTPD3, nonmetastatic cells 3, nucleoside-diphosphatese kinase 3 (NME1), NME7 and purine nucleoside phosphorylase 1 (PNP1) mRNA in the substantia nigra at stages 3-6; up-regulation of ADA mRNA in the frontal cortex area 8 at stages 3-4 and of AK1, AK5, NME4, NME5, NME6, 5'-nucleotidase (NT5E), PNP1 and prune homolog Drosophila at stages 5-6. There is no modification in the expression of these genes in the putamen at stages 3-5. CONCLUSIONS: Gene down-regulation in the substantia nigra may be interpreted as a consequence of dopaminergic cell death as ENTPD3, NME1, NME7, AK1 and PNP1 are mainly expressed in neurons. Yet ENTPD1 and NT5E, also down-regulated in the substantia nigra, are expressed in astrocytes, probably pericytes and microglia, respectively. In contrast, gene up-regulation in the frontal cortex area 8 at advanced stages of the disease suggests a primary manifestation or a compensation of altered purine metabolism in this region.


Assuntos
Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Doença de Parkinson/genética , Purinas/metabolismo , Putamen/metabolismo , Substância Negra/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrócitos/metabolismo , Astrócitos/patologia , Feminino , Lobo Frontal/patologia , Humanos , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Putamen/patologia , Substância Negra/patologia
5.
Neural Plast ; 2015: 573784, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26301107

RESUMO

Inflammatory changes are analyzed in the anterior spinal cord and frontal cortex area 8 in typical spinal-predominant ALS cases. Increased numbers of astrocytes and activated microglia are found in the anterior horn of the spinal cord and pyramidal tracts. Significant increased expression of TLR7, CTSS, and CTSC mRNA and a trend to increased expression of IL10RA, TGFB1, and TGFB2 are found in the anterior lumbar spinal cord in ALS cases compared to control cases, whereas C1QTNF7 and TNFRSF1A mRNA expression levels are significantly decreased. IL6 is significantly upregulated and IL1B shows a nonsignificant increased expression in frontal cortex area 8 in ALS cases. IL-6 immunoreactivity is found in scattered monocyte-derived macrophages/microglia and TNF-α in a few cells of unknown origin in ALS cases. Increased expression and abnormal distribution of IL-1ß occurred in motor neurons of the lumbar spinal cord in ALS. Strong IL-10 immunoreactivity colocalizes with TDP-43-positive inclusions in motor neurons in ALS cases. The present observations show a complex participation of cytokines and mediators of the inflammatory response in ALS consistent with increased proinflammatory cytokines and sequestration of anti-inflammatory IL-10 in affected neurons.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encefalite/metabolismo , RNA Mensageiro/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/patologia , Química Encefálica , Encefalite/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Córtex Pré-Frontal/metabolismo , Medula Espinal/metabolismo
6.
BMC Genomics ; 15: 729, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164183

RESUMO

BACKGROUND: The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. RESULTS: By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. CONCLUSIONS: Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Odorantes , Receptores Odorantes/genética , Animais , Linhagem Celular , Análise por Conglomerados , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Especificidade de Órgãos/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Receptores Odorantes/metabolismo , Proteínas Recombinantes , Substância Negra/metabolismo , Transcrição Gênica
7.
Transl Neurodegener ; 10(1): 8, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637132

RESUMO

OBJECTIVE: α-Synuclein has been studied as a potential biomarker for Parkinson's disease (PD) with no concluding results. Accordingly, there is an urgent need to find out reliable specific biomarkers for PD. GPR37 is an orphan G protein-coupled receptor that toxically accumulates in autosomal recessive juvenile parkinsonism. Here, we investigated whether GPR37 is upregulated in sporadic PD, and thus a suitable potential biomarker for PD. METHODS: GPR37 protein density and mRNA expression in postmortem substantia nigra (SN) from PD patients were analysed by immunoblot and RT-qPCR, respectively. The presence of peptides from the N-terminus-cleaved domain of GPR37 (i.e. ecto-GPR37) in human cerebrospinal fluid (CSF) was determined by liquid chromatography-mass spectrometric analysis. An engineered in-house nanoluciferase-based immunoassay was used to quantify ecto-GPR37 in CSF samples from neurological control (NC) subjects, PD patients and Alzheimer's disease (AD) patients. RESULTS: GPR37 protein density and mRNA expression were significantly augmented in sporadic PD. Increased amounts of ecto-GPR37 peptides in the CSF samples from PD patients were identified by mass spectrometry and quantified by the in-house ELISA method. However, the CSF total α-synuclein level in PD patients did not differ from that in NC subjects. Similarly, the cortical GPR37 mRNA expression and CSF ecto-GPR37 levels in AD patients were also unaltered. CONCLUSION: GPR37 expression is increased in SN of sporadic PD patients. The ecto-GPR37 peptides are significantly increased in the CSF of PD patients, but not in AD patients. These results open perspectives and encourage further clinical studies to confirm the validity and utility of ecto-GPR37 as a potential PD biomarker.


Assuntos
Doença de Parkinson/diagnóstico , Receptores Acoplados a Proteínas G/análise , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Biomarcadores , Química Encefálica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes , Substância Negra/metabolismo , Regulação para Cima , alfa-Sinucleína/líquido cefalorraquidiano
8.
Sci Transl Med ; 13(613): eabe7104, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586830

RESUMO

Huntington's disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy­linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine­responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.


Assuntos
Doença de Huntington , Poliadenilação , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas de Membrana Transportadoras , Transcriptoma
9.
Brain Pathol ; 30(2): 298-318, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397930

RESUMO

Human tau seeding and spreading occur following intracerebral inoculation of brain homogenates obtained from tauopathies in transgenic mice expressing natural or mutant tau, and in wild-type (WT) mice. The present study was geared to learning about the patterns of tau seeding, the cells involved and the characteristics of tau following intracerebral inoculation of homogenates from primary age-related tauopathy (PART: neuronal 4Rtau and 3Rtau), aging-related tau astrogliopathy (ARTAG: astrocytic 4Rtau) and globular glial tauopathy (GGT: 4Rtau with neuronal deposits and specific tau inclusions in astrocytes and oligodendrocytes). For this purpose, young and adult WT mice were inoculated unilaterally in the hippocampus or in the lateral corpus callosum with sarkosyl-insoluble fractions from PART, ARTAG and GGT cases, and were killed at variable periods of three to seven months. Brains were processed for immunohistochemistry in paraffin sections. Tau seeding occurred in the ipsilateral hippocampus and corpus callosum and spread to the septal nuclei, periventricular hypothalamus and contralateral corpus callosum, respectively. Tau deposits were mainly found in neurons, oligodendrocytes and threads; the deposits were diffuse or granular, composed of phosphorylated tau, tau with abnormal conformation and 3Rtau and 4Rtau independently of the type of tauopathy. Truncated tau at the aspartic acid 421 and ubiquitination were absent. Tau deposits had the characteristics of pre-tangles. A percentage of intracellular tau deposits co-localized with active (phosphorylated) tau kinases p38 and ERK 1/2. Present study shows that seeding and spreading of human tau into the brain of WT mice involves neurons and glial cells, mainly oligodendrocytes, thereby supporting the idea of a primary role of oligodendrogliopathy, together with neuronopathy, in the progression of tauopathies. In addition, it suggests that human tau inoculation modifies murine tau metabolism with the production and deposition of 3Rtau and 4Rtau, and by activation of specific tau kinases in affected cells.


Assuntos
Encéfalo/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Front Aging Neurosci ; 11: 112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191295

RESUMO

Introduction: Human tau seeding and spreading occur following intracerebral inoculation into different gray matter regions of brain homogenates obtained from tauopathies in transgenic mice expressing wild or mutant tau, and in wild-type (WT) mice. However, little is known about tau propagation following inoculation in the white matter. Objectives: The present study is geared to learning about the patterns of tau seeding and cells involved following unilateral inoculation in the corpus callosum of homogenates from sporadic Alzheimer's disease (AD), primary age-related tauopathy (PART: neuronal 4Rtau and 3Rtau), pure aging-related tau astrogliopathy (ARTAG: astroglial 4Rtau with thorn-shaped astrocytes TSAs), globular glial tauopathy (GGT: 4Rtau with neuronal tau and specific tau inclusions in astrocytes and oligodendrocytes, GAIs and GOIs, respectively), progressive supranuclear palsy (PSP: 4Rtau with neuronal inclusions, tufted astrocytes and coiled bodies), Pick's disease (PiD: 3Rtau with characteristic Pick bodies in neurons and tau containing fibrillar astrocytes), and frontotemporal lobar degeneration linked to P301L mutation (FTLD-P301L: 4Rtau familial tauopathy). Methods: Adult WT mice were inoculated unilaterally in the lateral corpus callosum with sarkosyl-insoluble fractions or with sarkosyl-soluble fractions from the mentioned tauopathies; mice were killed from 4 to 7 months after inoculation. Brains were fixed in paraformaldehyde, embedded in paraffin and processed for immunohistochemistry. Results: Tau seeding occurred in the ipsilateral corpus callosum and was also detected in the contralateral corpus callosum. Phospho-tau deposits were found in oligodendrocytes similar to coiled bodies and in threads. Moreover, tau deposits co-localized with active (phosphorylated) tau kinases p38 and ERK 1/2, suggesting active tau phosphorylation of murine tau. TSAs, GAIs, GOIs, tufted astrocytes, and tau-containing fibrillar astrocytes were not seen in any case. Tau deposits were often associated with slight myelin disruption and the presence of small PLP1-immunoreactive globules and dots in the ipsilateral corpus callosum 6 months after inoculation of sarkosyl-insoluble fractions from every tauopathy. Conclusions: Seeding and spreading of human tau in the corpus callosum of WT mice occurs in oligodendrocytes, thereby supporting the idea of a role of oligodendrogliopathy in tau seeding and spreading in the white matter in tauopathies. Slight differences in the predominance of threads or oligodendroglial deposits suggest disease differences in the capacity of tau seeding and spreading among tauopathies.

11.
Front Neurosci ; 13: 382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068782

RESUMO

The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson's disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes. For instance, instability of lipid raft (LR) microdomains, membrane regions with a particular lipid composition, is an early event in the development of PD. However, the relevance of membrane microdomains in the regulation and trafficking of the distinct α-syn configurations associated with PD remains unexplored. In this study, using 6- and 14-month-old healthy and MPTP-treated animals as a model of PD, we have investigated the putative molecular alterations of raft membrane microstructures, and their impact on α-syn dynamics and conformation. A comparison of lipid analyses of LR microstructures and non-raft (NR) fractions showed alterations in gangliosides, cholesterol, polyunsaturated fatty acids (PUFA) and phospholipids in the midbrain and cortex of aged and MPTP-treated mice. In particular, the increase of PUFA and phosphatidylserine (PS) during aging correlated with α-syn multimeric formation in NR. In these aggregates, α-syn was phosphorylated in pSer129, the most abundant post-transductional modification of α-syn promoting toxic aggregation. Interestingly, similar variations in PUFA and PS content correlating with α-syn insoluble accumulation were also detected in membrane microstructures from the human cortex of incidental Parkinson Disease (iPD) and PD, as compared to healthy controls. Furthermore, structural changes in membrane lipid microenvironments may induce rearrangements in raft-interacting proteins involved in other neuropathologies. Therefore, we also investigated the dynamic of other protein markers involved in cognition and memory impairment such as metabotropic glutamate receptor 5 (mGluR5), ionotropic NMDA receptor (NMDAR2B), prion protein (PrPc) and amyloid precursor protein (APP), whose activity depends on membrane lipid organization. We observed a decline of these protein markers in LR fractions with the progression of aging and pathology. Overall, our findings demonstrate that lipid alterations in membranous compartments promoted by brain aging and PD-like injury may have an effect on α-syn aggregation and segregation in abnormal multimeric structures.

12.
Nat Neurosci ; 22(8): 1258-1268, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308530

RESUMO

The deposition of aggregated amyloid-ß peptides derived from the pro-amyloidogenic processing of the amyloid precurson protein (APP) into characteristic amyloid plaques (APs) is distinctive to Alzheimer's disease (AD). Alternative APP processing via the metalloprotease ADAM10 prevents amyloid-ß formation. We tested whether downregulation of ADAM10 activity by its secreted endogenous inhibitor secreted-frizzled-related protein 1 (SFRP1) is a common trait of sporadic AD. We demonstrate that SFRP1 is significantly increased in the brain and cerebrospinal fluid of patients with AD, accumulates in APs and binds to amyloid-ß, hindering amyloid-ß protofibril formation. Sfrp1 overexpression in an AD-like mouse model anticipates the appearance of APs and dystrophic neurites, whereas its genetic inactivation or the infusion of α-SFRP1-neutralizing antibodies favors non-amyloidogenic APP processing. Decreased Sfrp1 function lowers AP accumulation, improves AD-related histopathological traits and prevents long-term potentiation loss and cognitive deficits. Our study unveils SFRP1 as a crucial player in AD pathogenesis and a promising AD therapeutic target.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína ADAM10/biossíntese , Proteína ADAM10/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Anticorpos Bloqueadores/uso terapêutico , Química Encefálica/genética , Regulação para Baixo , Humanos , Potenciação de Longa Duração , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Transgênicos , Neuritos/patologia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/genética , Placa Amiloide/patologia
13.
Brain Pathol ; 28(1): 43-57, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984680

RESUMO

Altered mitochondrial function is characteristic in the substantia nigra in Parkinson's disease (PD). Information about mitochondria in other brain regions such as the cerebral cortex is conflicting mainly because most studies have not contemplated the possibility of variable involvement depending on the region, stage of disease progression and clinical symptoms such as the presence or absence of dementia. RT-qPCR of 18 nuclear mRNAs encoding subunits of mitochondrial complexes and 12 mRNAs encoding energy metabolism-related enzymes; western blotting of mitochondrial proteins; and analysis of enzymatic activities of complexes I, II, II, IV and V of the respiratory chain were assessed in frontal cortex area 8 and the angular gyrus of middle-aged individuals (MA), and those with incidental PD (iPD), long-lasting PD with parkinsonism without dementia (PD) and long-lasting PD with dementia (PDD). Up-regulation of several genes was found in frontal cortex area 8 in PD when compared with MA and in the angular gyrus in iPD when compared with MA. Marked down-regulation of genes encoding mitochondrial subunits and energy metabolism-related enzymes occurs in frontal cortex but only of genes coding for energy metabolism-related enzymes in the angular gyrus in PDD. Significant decrease in the protein expression levels of several mitochondrial subunits encoded by these genes occurs in frontal cortex area 8 and angular gyrus in PDD. Moreover, expression of MT-ND1 which is encoded by mitochondrial DNA is also reduced in PDD. Reduced enzymatic activity of complex III in frontal cortex area 8 and angular gyrus is observed in PD, but dramatic reduction in the activity of complexes I, II, II and IV in both regions characterizes PDD. Dementia in the context of PD is linked to region-specific deregulation of genomic genes encoding subunits of mitochondrial complexes and to marked reduction in the activity of mitochondrial complexes I, II, III and IV.


Assuntos
Demência/metabolismo , Lobo Frontal/metabolismo , Mitocôndrias/metabolismo , Lobo Parietal/metabolismo , Doença de Parkinson/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Demência/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/metabolismo , Doença de Parkinson/complicações , Doença de Parkinson/terapia , RNA Mensageiro/metabolismo , alfa-Sinucleína/metabolismo
14.
Brain Pathol ; 28(3): 315-333, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28321951

RESUMO

The present study investigates global transcriptional changes in frontal cortex area 8 in incidental Lewy Body disease (iLBD), Parkinson disease (PD) and Dementia with Lewy bodies (DLB). We identified different coexpressed gene sets associated with disease stages, and gene ontology categories enriched in gene modules and differentially expressed genes including modules or gene clusters correlated to iLBD comprising upregulated dynein genes and taste receptors, and downregulated innate inflammation. Focusing on DLB, we found modules with genes significantly enriched in functions related to RNA and DNA production, mitochondria and energy metabolism, purine metabolism, chaperone and protein folding system and synapses and neurotransmission (particularly the GABAergic system). The expression of more than fifty selected genes was assessed with real time quantitative polymerase chain reaction. Our findings provide, for the first time, evidence of molecular cortical alterations in iLBD and involvement of several key metabolic pathways and gene hubs in DLB which may underlie cognitive impairment and dementia.


Assuntos
Lobo Frontal/metabolismo , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Transcriptoma , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo
15.
Front Aging Neurosci ; 10: 122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755340

RESUMO

Glutamate transporter solute carrier family 1, member 2 (GLT1/EAAT2), a major modulator of glutamate homeostasis in astrocytes, is assessed in post-mortem human brain samples of frontal cortex area 8 in advanced stages of Alzheimer disease (AD) and terminal stages of dementia with Lewy bodies (DLB) in order to gain understanding of astrogliopathy in diseases manifested by dementia. Glial fibrillary acidic protein (GFAP) mRNA expression is significantly increased in AD but not in DLB, whereas GLT1, vesicular glutamate transporter 1 (vGLUT1) and aldehyde dehydrogenase 1 family member 1 (ALDH1L1) are not modified in AD and DLB when compared with controls. GLT1 protein levels are not altered in AD and DLB but GFAP and ALDH1L1 are significantly increased in AD, and GFAP in DLB. As a result, a non-significant decrease in the ratio between GLT1 and GFAP, and between GLT1 and ALDH1L1, is found in both AD and DLB. Double-labeling immunofluorescence and confocal microscopy revealed no visible reduction of GLT1 immunoreactivity in relation to ß-amyloid plaques in AD. These data suggest a subtle imbalance between GLT1, and GFAP and ALDH1L1 expression, with limited consequences in glutamate transport.

16.
Nat Med ; 24(5): 598-603, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29736028

RESUMO

The chances to develop Alzheimer's disease (AD) result from a combination of genetic and non-genetic risk factors 1 , the latter likely being mediated by epigenetic mechanisms 2 . In the past, genome-wide association studies (GWAS) have identified an important number of risk loci associated with AD pathology 3 , but a causal relationship remains difficult to establish. In contrast, locus-specific or epigenome-wide association studies (EWAS) have revealed site-specific epigenetic alterations, which provide mechanistic insights for a particular risk gene but often lack the statistical power of GWAS 4 . Here, combining both approaches, we report a previously unidentified association of the peptidase M20-domain-containing protein 1 (PM20D1) with AD. We find that PM20D1 is a methylation and expression quantitative trait locus coupled to an AD-risk associated haplotype, which displays enhancer-like characteristics and contacts the PM20D1 promoter via a haplotype-dependent, CCCTC-binding-factor-mediated chromatin loop. Furthermore, PM20D1 is increased following AD-related neurotoxic insults at symptomatic stages in the APP/PS1 mouse model of AD and in human patients with AD who are carriers of the non-risk haplotype. In line, genetically increasing or decreasing the expression of PM20D1 reduces and aggravates AD-related pathologies, respectively. These findings suggest that in a particular genetic background, PM20D1 contributes to neuroprotection against AD.


Assuntos
Doença de Alzheimer/genética , Amidoidrolases/genética , Locos de Características Quantitativas/genética , Idoso , Amidoidrolases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Estudo de Associação Genômica Ampla , Humanos , Peróxido de Hidrogênio/metabolismo , Desequilíbrio de Ligação/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
17.
Brain Pathol ; 28(6): 965-985, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29396893

RESUMO

Aging-related tau astrogliopathy (ARTAG) is defined by the presence of two types of tau-bearing astrocytes: thorn-shaped astrocytes (TSAs) and granular/fuzzy astrocytes in the brain of old-aged individuals. The present study is focused on TSAs in rare forms of ARTAG with no neuronal tau pathology or restricted to entorhinal and transentorhinal cortices, to avoid bias from associated tauopathies. TSAs show 4Rtau phosphorylation at several specific sites and abnormal tau conformation, but they lack ubiquitin and they are not immunostained with tau-C3 antibodies which recognize truncated tau at Asp421. Astrocytes in ARTAG have atrophic processes, reduced glial fibrillary acidic protein (GFAP) and increased superoxide dismutase 2 (SOD2) immunoreactivity. Gel electrophoresis and western blotting of sarkosyl-insoluble fractions reveal a pattern of phospho-tau in ARTAG characterized by two bands of 68 and 64 kDa, and several middle bands between 35 and 50 kDa which differ from what is seen in AD. Phosphoproteomics of dissected vulnerable regions identifies an increase of phosphorylation marks in a large number of proteins in ARTAG compared with controls. GFAP, aquaporin 4, several serine-threonine kinases, microtubule associated proteins and other neuronal proteins are among the differentially phosphorylated proteins in ARTAG thus suggesting a hyper-phosphorylation background that affects several molecules, including many kinases and proteins from several cell compartments and various cell types. Finally, present results show for the first time that tau seeding is produced in neurons of the hippocampal complex, astrocytes, oligodendroglia and along fibers of the corpus callosum, fimbria and fornix following inoculation into the hippocampus of wild type mice of sarkosyl-insoluble fractions enriched in hyper-phosphorylated tau from selected ARTAG cases. These findings show astrocytes as crucial players of tau seeding in tauopathies.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/classificação , Corpo Caloso/metabolismo , Feminino , Fórnice/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Oligodendroglia/metabolismo , Fosforilação , Superóxido Dismutase/metabolismo , Substância Branca/metabolismo , Proteínas tau/química , Proteínas tau/classificação
18.
Am J Neurodegener Dis ; 6(2): 15-25, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695061

RESUMO

Expression of the nucleolar chaperones nucleolin (NCL) and nucleophosmin (NPM1), upstream binding transcription factor (UBTF), rRNA18S, rRNA28S, and several genes encoding ribosomal proteins (RPs) is decreased in frontal cortex area 8 at advanced stages of Alzheimer's disease (AD). This is accompanied by reduced protein levels of elongation factors eEF1A and eEF2. Changes are more marked in AD cases with rapid course (rpAD), as initiation factor eIF3η is significantly down-regulated and several RP genes up-regulated in rpAD when compared with typical AD. These changes contrast with those seen in APP/PS1 transgenic mice used as a model of AD-like ß-amyloidopathy; Ncl mRNA, rRNA18S, rRNA28S and seven out of fifteen assessed RP genes are up-regulated in APP/PS1 mice aged 20 months; only eEF2 protein levels are reduced in transgenic mice. Our findings show marked altered expression of molecules linked to the protein synthesis machinery from the nucleolus to the ribosome in frontal cortex at terminal stages of AD which differs from that seen in APP/PS1 transgenic mice, thus further suggesting that molecular signals in mouse models do not apply to real human disease counterparts.

19.
Neurobiol Aging ; 49: 52-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768960

RESUMO

Lipid rafts are highly dynamic membrane microdomains intimately associated with cell signaling. Compelling evidence has demonstrated that alterations in lipid rafts are associated with neurodegenerative diseases such Alzheimer's disease, but at present, whether alterations in lipid raft microdomains occur in other types of dementia such dementia with Lewy bodies (DLB) remains unknown. Our analyses reveal that lipid rafts from DLB exhibit aberrant lipid profiles including low levels of n-3 long-chain polyunsaturated fatty acids (mainly docosahexaenoic acid), plasmalogens and cholesterol, and reduced unsaturation and peroxidability indexes. As a consequence, lipid raft resident proteins holding principal factors of the ß-amyloidogenic pathway, including ß-amyloid precursor protein, presenilin 1, ß-secretase, and PrP, are redistributed between lipid rafts and nonraft domains in DLB frontal cortex. Meta-analysis discloses certain similarities in the altered composition of lipid rafts between DLB and Parkinson's disease which are in line with the spectrum of Lewy body diseases. In addition, redistribution of proteins linked to the ß-amyloidogenic pathway in DLB can facilitate generation of ß-amyloid, thus providing mechanistic clues to the intriguing convergence of Alzheimer's disease pathology, particularly ß-amyloid deposition, in DLB.


Assuntos
Doença de Alzheimer/metabolismo , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Doença por Corpos de Lewy/metabolismo , Metabolismo dos Lipídeos , Microdomínios da Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Humanos , Masculino , Plasmalogênios/metabolismo
20.
Front Neurol ; 8: 89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28348546

RESUMO

OBJECTIVES: The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. METHODS: Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of ß-amyloid, tau, and synuclein species were used. RESULTS: The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer's disease. Altered solubility and aggregation of α-synuclein, increased ß-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble ß-amyloid are found in DLB. However, increased soluble ß-amyloid 1-40 and ß-amyloid 1-42, and increased TNFα mRNA and protein expression, distinguish rpDLB. CONCLUSION: Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA