Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 26(8): 3393-411, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22601779

RESUMO

The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.


Assuntos
Adipócitos/metabolismo , Grelina/fisiologia , Resistência à Insulina , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adiponectina , Animais , Apoptose/efeitos dos fármacos , Dieta Hiperlipídica , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Inflamação , Ilhotas Pancreáticas/metabolismo , Leptina , Lipólise/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Int J Cancer ; 130(3): 694-704, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21400508

RESUMO

Anaplastic thyroid carcinoma (ATC) has a rapidly fatal clinical course, being resistant to multimodal treatments. Microtubules, α/ß tubulin heterodimers, are crucial in cell signaling, division and mitosis and are among the most successful targets for anticancer therapy. Panobinostat (LBH589) is a potent deacetylase inhibitor acting both on histones and nonhistonic proteins, including α-tubulin. In vitro LBH589, evaluated in three ATC cell lines (BHT-101, CAL-62 and 8305C), resulted in impairment of cell viability, inhibition of colony formation, cell cycle arrest and apoptosis induction. Mechanistically, we showed that LBH589 not only affected the expression of p21 and cyclin D1, but markedly determined microtubule stabilization as evidenced by tubulin acetylation and increased tubulin polymerization. In a SCID xenograft model implanted with CAL-62 cells, the cytotoxic properties of LBH589 were confirmed. The drug at the dose of 20 mg/kg significantly impaired tumor growth (final tumor volume 2.5-fold smaller than in untreated animals); at this dose, no relevant side effects were observed. In tumors of treated animals, a significant reduction of Ki67, which was negatively correlated with tubulin acetylation, was observed. Moreover, acetyl-tubulin levels negatively correlated with tumor volume at sacrifice, reinforcing the opinion that tubulin acetylation has a role in the inhibition of tumor growth. In conclusion, LBH589, acting on both histones and nonhistonic proteins in anaplastic thyroid cancer, appears to be a promising therapeutic agent for the treatment of this kind of cancer which is known not to respond to conventional therapy.


Assuntos
Antineoplásicos/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Neoplasias da Glândula Tireoide/metabolismo , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis , Camundongos , Camundongos Nus , Panobinostat , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Tubulina (Proteína)/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33539327

RESUMO

Extracellular vesicles (EVs) are implicated in the crosstalk between adipocytes and other metabolic organs, and an altered biological cargo has been observed in EVs from human obese adipose tissue (AT). Yet, the role of adipocyte-derived EVs in pancreatic ß cells remains to be determined. Here, we explored the effects of EVs released from adipocytes isolated from both rodents and humans and human AT explants on survival and function of pancreatic ß cells and human pancreatic islets. EVs from healthy 3T3-L1 adipocytes increased survival and proliferation and promoted insulin secretion in INS-1E ß cells and human pancreatic islets, both those untreated or exposed to cytokines or glucolipotoxicity, whereas EVs from inflamed adipocytes caused ß cell death and dysfunction. Human lean adipocyte-derived EVs produced similar beneficial effects, whereas EVs from obese AT explants were harmful for human EndoC-ßH3 ß cells. We observed differential expression of miRNAs in EVs from healthy and inflamed adipocytes, as well as alteration in signaling pathways and expression of ß cell genes, adipokines, and cytokines in recipient ß cells. These in vitro results suggest that, depending on the physiopathological state of AT, adipocyte-derived EVs may influence ß cell fate and function.


Assuntos
Adipócitos , Tecido Adiposo , Vesículas Extracelulares/metabolismo , Ilhotas Pancreáticas , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Animais , Feminino , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos
4.
Artigo em Inglês | MEDLINE | ID: mdl-27379018

RESUMO

Glucocorticoid receptor (GR) activation has been shown to reduce adult hippocampal progenitor cell proliferation and neurogenesis. By contrast, mineralocorticoid receptor (MR) signaling is associated with neuronal survival in the dentate gyrus of the hippocampus, and impairment of hippocampal MR has been linked to pathological conditions, such as depression or neurodegenerative disorders. Here, we aimed to further clarify the protective role of MR in adult hippocampal neurons by studying the survival and proliferative effects of the highly potent MR agonist fludrocortisone (Fludro) in adult rat hippocampal progenitor cells (AHPs), along with the associated signaling mechanisms. Fludro, which upregulated MR but not GR expression, increased survival and proliferation and prevented apoptosis in AHPs cultured in growth factor-deprived medium. These effects were blunted by the MR antagonist spironolactone and by high doses of the GR agonist dexamethasone. Moreover, they involved signaling through cAMP/protein kinase A (PKA)/cAMP response element-binding protein, phosphoinositide 3-kinase (PI3K)/Akt and its downstream targets glycogen synthase kinase-3ß (GSK-3ß) and mammalian target of rapamycin. Furthermore, Fludro attenuated the detrimental effects of amyloid-ß peptide 1-42 (Aß1-42) on cell survival, proliferation, and apoptosis in AHPs, and increased the phosphorylation of both PI3K/Akt and GSK-3ß, which was reduced by Aß1-42. Finally, Fludro blocked Aß1-42-induced hyperphosphorylation of Tau protein, which is a main feature of Alzheimer's disease. Overall, these results are the first to show the protective and proliferative role of Fludro in AHPs, suggesting the potential therapeutic importance of targeting MR for increasing hippocampal neurogenesis and for treating neurodegenerative diseases.

5.
Mol Cell Endocrinol ; 422: 18-30, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26586206

RESUMO

The ghrelin gene-derived peptide obestatin promotes survival in different cell types through a yet undefined receptor; however, its potential neuroprotective activities are still unknown. Here, obestatin effects were investigated on proliferation and survival of adult rat hippocampal progenitor cells (AHPs). Obestatin immunoreactivity was found in AHPs; moreover, obestatin binding to AHPs was displaced by the GLP-1R agonist Ex-4 and antagonist Ex-9. Furthermore, obestatin increased cell proliferation and survival in growth factor deprived medium and inhibited apoptosis; these effects were blocked by Ex-9. The underlying mechanisms involved Gαs/cAMP/PKA/CREB signaling, phosphorylation of ERK1/2 and PI3K/Akt, and the PI3K targets GSK-3ß/ß-catenin and mTOR. Obestatin also counteracted Aß1-42-induced detrimental effects through inhibition of GSK-3ß activity and Tau hyperphosphorylation, main hallmarks of neuronal death in Alzheimer's disease. These findings indicate a novel protective role for obestatin in AHPs and candidate this peptide as potential therapeutic target for increasing neurogenesis and for approaching neurodegenerative disorders.


Assuntos
Células-Tronco Adultas/citologia , Peptídeos beta-Amiloides/toxicidade , Hipocampo/citologia , Hormônios Peptídicos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Exenatida , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Peçonhas/farmacologia , Proteínas tau/metabolismo
6.
Endocrinology ; 156(9): 3239-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26110916

RESUMO

Skeletal muscle atrophy is a consequence of different chronic diseases, including cancer, heart failure, and diabetes, and also occurs in aging and genetic myopathies. It results from an imbalance between anabolic and catabolic processes, and inflammatory cytokines, such as TNF-α, have been found elevated in muscle atrophy and implicated in its pathogenesis. GHRH, in addition to stimulating GH secretion from the pituitary, exerts survival and antiapoptotic effects in different cell types. Moreover, we and others have recently shown that GHRH displays antiapoptotic effects in isolated cardiac myocytes and protects the isolated heart from ischemia/reperfusion injury and myocardial infarction in vivo. On these bases, we investigated the effects of GHRH on survival and apoptosis of TNF-α-treated C2C12 myotubes along with the underlying mechanisms. GHRH increased myotube survival and prevented TNF-α-induced apoptosis through GHRH receptor-mediated mechanisms. These effects involved activation of phosphoinositide 3-kinase/Akt pathway and inactivation of glycogen synthase kinase-3ß, whereas mammalian target of rapamycin was unaffected. GHRH also increased the expression of myosin heavy chain and the myogenic transcription factor myogenin, which were both reduced by the cytokine. Furthermore, GHRH inhibited TNF-α-induced expression of nuclear factor-κB, calpain, and muscle ring finger1, which are all involved in muscle protein degradation. In summary, these results indicate that GHRH exerts survival and antiapoptotic effects in skeletal muscle cells through the activation of anabolic pathways and the inhibition of proteolytic routes. Overall, our findings suggest a novel therapeutic role for GHRH in the treatment of muscle atrophy-associated diseases.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Animais , Apoptose , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Fibras Musculares Esqueléticas/citologia , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa
7.
PLoS One ; 8(5): e64374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741322

RESUMO

Availability of large amounts of in vitro generated ß-cells may support replacement therapy in diabetes. However, methods to obtain ß-cells from stem/progenitor cells are limited by inefficient endocrine differentiation. We have recently shown that the ghrelin gene product obestatin displays beneficial effects on pancreatic ß-cell survival and function. Obestatin prevents ß-cell apoptosis, preserves ß-cell mass and stimulates insulin secretion in vitro and in vivo, in both normal and diabetic conditions. In the present study, we investigated whether obestatin may promote in vitro ß-cell generation from mouse pancreatic islet-derived precursor cells. Treatment of cultured islets of Langerhans with obestatin (i) enriched cells expressing the mesenchymal/neuronal marker nestin, which is associated with pancreatic precursors; (ii) increased cell survival and reduced apoptosis during precursor selection; (iii) promoted the generation of islet-like cell clusters (ICCs) with increased insulin gene expression and C-peptide secretion. Furthermore, obestatin modulated the expression of fibroblast growth factor receptors (FGFRs), Notch receptors and neurogenin 3 (Ngn3) during islet-derived precursor cell selection and endocrine differentiation. These results indicate that obestatin improves the generation of functional ß-cells/ICCs in vitro, suggesting implications for cell-based replacement therapy in diabetes. Moreover, obestatin may play a role in regulating pathways involved in pancreas development and regeneration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Peptídeo C/biossíntese , Peptídeo C/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina/genética , Nestina/metabolismo , Hormônios Peptídicos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA