Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L576-L594, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318710

RESUMO

The paramyxoviridae, respiratory syncytial virus (RSV), and murine respirovirus are enveloped, negative-sense RNA viruses that are the etiological agents of vertebrate lower respiratory tract infections (LRTIs). We observed that RSV infection in human small airway epithelial cells induced accumulation of glycosylated proteins within the endoplasmic reticulum (ER), increased glutamine-fructose-6-phosphate transaminases (GFPT1/2) and accumulation of uridine diphosphate (UDP)-N-acetylglucosamine, indicating activation of the hexosamine biosynthetic pathway (HBP). RSV infection induces rapid formation of spliced X-box binding protein 1 (XBP1s) and processing of activating transcription factor 6 (ATF6). Using pathway selective inhibitors and shRNA silencing, we find that the inositol-requiring enzyme (IRE1α)-XBP1 arm of the unfolded protein response (UPR) is required not only for activation of the HBP, but also for expression of mesenchymal transition (EMT) through the Snail family transcriptional repressor 1 (SNAI1), extracellular matrix (ECM)-remodeling proteins fibronectin (FN1), and matrix metalloproteinase 9 (MMP9). Probing RSV-induced open chromatin domains by ChIP, we find XBP1 binds and recruits RNA polymerase II to the IL6, SNAI1, and MMP9 promoters and the intragenic superenhancer of glutamine-fructose-6-phosphate transaminase 2 (GFPT2). The UPR is sustained through RSV by an autoregulatory loop where XBP1 enhances Pol II binding to its own promoter. Similarly, we investigated the effects of murine respirovirus infection on its natural host (mouse). Murine respirovirus induces mucosal growth factor response, EMT, and the indicators of ECM remodeling in an IRE1α-dependent manner, which persists after viral clearance. These data suggest that IRE1α-XBP1s arm of the UPR pathway is responsible for paramyxovirus-induced metabolic adaptation and mucosal remodeling via EMT and ECM secretion.


Assuntos
Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Hexosaminas/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/fisiologia , Resposta a Proteínas não Dobradas , Replicação Viral , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular Transformada , Endorribonucleases/genética , Células Epiteliais/patologia , Células Epiteliais/virologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Hexosaminas/genética , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/patologia , Proteína 1 de Ligação a X-Box/genética
2.
J Immunol ; 201(9): 2753-2766, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275049

RESUMO

High mobility group box 1 (HMGB1) is a multifunctional nuclear protein that translocates to the cytoplasm and is subsequently released to the extracellular space during infection and injury. Once released, it acts as a damage-associated molecular pattern and regulates immune and inflammatory responses. Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants and elderly, for which no effective treatment or vaccine is currently available. This study investigated the effects of HMGB1 on cytokine secretion, as well as the involvement of NF-κB and TLR4 pathways in RSV-induced HMGB1 release in human airway epithelial cells (AECs) and its proinflammatory effects on several human primary immune cells. Purified HMGB1 was incubated with AECs (A549 and small alveolar epithelial cells) and various immune cells and measured the release of proinflammatory mediators and the activation of NF-κB and P38 MAPK. HMGB1 treatment significantly increased the phosphorylation of NF-κB and P38 MAPK but did not induce the release of cytokines/chemokines from AECs. However, addition of HMGB1 to immune cells did significantly induce the release of cytokines/chemokines and activated the NF-κB and P38 MAPK pathways. We found that activation of NF-κB accounted for RSV-induced HMGB1 secretion in AECs in a TLR4-dependent manner. These results indicated that HMGB1 secreted from AECs can facilitate the secretion of proinflammatory mediators from immune cells in a paracrine mechanism, thus promoting the inflammatory response that contributes to RSV pathogenesis. Therefore, blocking the proinflammatory function of HMGB1 may be an effective approach for developing novel therapeutics.


Assuntos
Proteína HMGB1/imunologia , Leucócitos Mononucleares/imunologia , Mucosa Respiratória/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Humanos , Imunidade Inata/imunologia , Vírus Sincicial Respiratório Humano/imunologia
3.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593031

RESUMO

Lower respiratory tract infection with respiratory syncytial virus (RSV) produces profound inflammation. Despite an understanding of the role of adaptive immunity in RSV infection, the identity of the major sentinel cells initially triggering inflammation is controversial. Here we evaluate the role of nonciliated secretoglobin (Scgb1a1)-expressing bronchiolar epithelial cells in RSV infection. Mice expressing a tamoxifen (TMX)-inducible Cre recombinase-estrogen receptor fusion protein (CreERTM) knocked into the Scgb1a1 locus were crossed with mice that harbor a RelA conditional allele (RelAfl ), with loxP sites flanking exons 5 to 8 of the Rel homology domain. The Scgb1a1CreERTM/+ × RelAfl/fl mouse is a RelA conditional knockout (RelACKO) of a nonciliated epithelial cell population enriched in the small bronchioles. TMX-treated RelACKO mice have reduced pulmonary neutrophilic infiltration and impaired expression and secretion of NF-κB-dependent cytokines in response to RSV. In addition, RelACKO mice had reduced expression levels of interferon (IFN) regulatory factor 1/7 (IRF1/7) and retinoic acid-inducible gene I (RIG-I), components of the mucosal IFN positive-feedback loop. We demonstrate that RSV replication induces RelA to complex with bromodomain-containing protein 4 (BRD4), a cofactor required for RNA polymerase II (Pol II) phosphorylation, activating the atypical histone acetyltransferase (HAT) activity of BRD4 required for phospho-Ser2 Pol II formation, histone H3K122 acetylation, and cytokine secretion in vitro and in vivo TMX-treated RelACKO mice have less weight loss and reduced airway obstruction/hyperreactivity yet similar levels of IFN-γ production despite higher levels of virus production. These data indicate that the nonciliated Scgb1a1-expressing epithelium is a major innate sensor for restricting RSV infection by mediating neutrophilic inflammation and chemokine and mucosal IFN production via the RelA-BRD4 pathway.IMPORTANCE RSV infection is the most common cause of infant hospitalizations in the United States, resulting in 2.1 million children annually requiring medical attention. RSV primarily infects nasal epithelial cells, spreading distally to produce severe lower respiratory tract infections. Our study examines the role of a nonciliated respiratory epithelial cell population in RSV infection. We genetically engineered a mouse that can be selectively depleted of the NF-κB/RelA transcription factor in this subset of epithelial cells. These mice show an impaired activation of the bromodomain-containing protein 4 (BRD4) coactivator, resulting in reduced cytokine expression and neutrophilic inflammation. During the course of RSV infection, epithelial RelA-depleted mice have reduced disease scores and airway hyperreactivity yet increased levels of virus replication. We conclude that RelA-BRD4 signaling in nonciliated bronchiolar epithelial cells mediates neutrophilic airway inflammation and disease severity. This complex is an attractive target to reduce the severity of infection.


Assuntos
Células Epiteliais Alveolares/metabolismo , Interferon gama/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Proteínas Nucleares/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Uteroglobina/metabolismo , Células Epiteliais Alveolares/virologia , Animais , Bronquíolos/patologia , Bronquíolos/virologia , Linhagem Celular , Proteína DEAD-box 58/biossíntese , Feminino , Humanos , Inflamação/patologia , Inflamação/virologia , Fator Regulador 1 de Interferon/biossíntese , Fator Regulador 7 de Interferon/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Tamoxifeno/farmacologia , Fator de Transcrição RelA/genética
4.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185593

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in young children and high-risk adults. However, a specific treatment for this viral infection is not currently available. In this study, we discovered that an exchange protein directly activated by cyclic AMP (EPAC) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, treatment with EPAC inhibitor (ESI-09), but not protein kinase A inhibitor (H89), significantly inhibits RSV replication and proinflammatory cytokine/chemokine induction. In addition, RSV-activated transcriptional factors belonging to the NF-κB and IRF families are also suppressed by ESI-09. Through isoform-specific gene knockdown, we found that EPAC2, but not EPAC1, plays a dominant role in controlling RSV replication and virus-induced host responses. Experiments using both EPAC2 knockout and EPAC2-specific inhibitor support such roles of EPAC2. Therefore, EPAC2 is a promising therapeutic target to regulate RSV replication and associated inflammation.IMPORTANCE RSV is a serious public health problem, as it is associated with bronchiolitis, pneumonia, and asthma exacerbations. Currently no effective treatment or vaccine is available, and many molecular mechanisms regarding RSV-induced lung disease are still significantly unknown. This project aims to elucidate an important and novel function of a protein, called EPAC2, in RSV replication and innate inflammatory responses. Our results should provide an important insight into the development of new pharmacologic strategies against RSV infection, thereby reducing RSV-associated morbidity and mortality.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Vírus Sincicial Respiratório Humano/genética , Replicação Viral/fisiologia , Células A549 , Animais , Linhagem Celular , Quimiocinas/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Humanos , Hidrazonas/farmacologia , Isoquinolinas/farmacologia , Isoxazóis/farmacologia , Camundongos , NF-kappa B/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Infecções por Vírus Respiratório Sincicial/virologia , Sulfonamidas/farmacologia
5.
Pediatr Res ; 86(1): 39-46, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30986815

RESUMO

BACKGROUND: Environmental tobacco smoke (ETS) is a known risk factor for severe respiratory syncytial virus (RSV) infections, yet the mechanisms of ETS/RSV comorbidity are largely unknown. Cystathionine γ-lyase regulates important physiological functions of the respiratory tract. METHODS: We used mice genetically deficient in the cystathionine γ-lyase enzyme (CSE), the major H2S-generating enzyme in the lung to determine the contribution of H2S to airway disease in response to side-stream tobacco smoke (TS), and to TS/RSV co-exposure. RESULTS: Following a 2-week period of exposure to TS, CSE-deficient mice (KO) showed a dramatic increase in airway hyperresponsiveness (AHR) to methacholine challenge, and greater airway cellular inflammation, compared with wild-type (WT) mice. TS-exposed CSE KO mice that were subsequently infected with RSV exhibited a more severe clinical disease, airway obstruction and AHR, enhanced viral replication, and lung inflammation, compared with TS-exposed RSV-infected WT mice. TS-exposed RSV-infected CSE KO mice had also a significant increase in the number of neutrophils in bronchoalveolar lavage fluid and increased levels of inflammatory cytokines and chemokines. CONCLUSION: This study demonstrates the critical contribution of the H2S-generating pathway to airway reactivity and disease following exposure to ETS alone or in combination with RSV infection.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Cistationina gama-Liase/deficiência , Pulmão/fisiopatologia , Pulmão/virologia , Hipersensibilidade Respiratória/complicações , Infecções por Vírus Respiratório Sincicial/complicações , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Feminino , Predisposição Genética para Doença , Sulfeto de Hidrogênio/química , Inflamação/etiologia , Masculino , Cloreto de Metacolina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Hipersensibilidade Respiratória/virologia , Vírus Sinciciais Respiratórios
6.
J Immunol ; 198(8): 3345-3364, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258195

RESUMO

Lower respiratory tract infections from respiratory syncytial virus (RSV) are due, in part, to secreted signals from lower airway cells that modify the immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea versus small airway bronchiolar cells. A workflow was established using telomerase-immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in secreted proteins and nanoparticles (exosomes). Approximately one third of secretome proteins are exosomal; the remainder are from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea versus bronchioles. A total of 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate. Fifteen proteins unique to RSV-infected primary human cultures from trachea were regulated by epithelial-specific ets homologous factor. A total of 106 proteins unique to RSV-infected human small airway epithelial cells was regulated by the transcription factor NF-κB. In this latter group, we validated the differential expression of CCL20/macrophage-inducible protein 3α, thymic stromal lymphopoietin, and CCL3-like 1 because of their roles in Th2 polarization. CCL20/macrophage-inducible protein 3α was the most active mucin-inducing factor in the RSV-infected human small airway epithelial cell secretome and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses and regional differences in the epithelial secretome participating in RSV lower respiratory tract infection-induced airway remodeling.


Assuntos
Remodelação das Vias Aéreas/imunologia , Bronquíolos/imunologia , Proteômica/métodos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções Respiratórias/imunologia , Bronquíolos/metabolismo , Células Cultivadas , Humanos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/imunologia , Infecções Respiratórias/metabolismo , Traqueia/imunologia , Traqueia/metabolismo
7.
Semin Cell Dev Biol ; 49: 52-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26303192

RESUMO

The teleologic link between increased production of pro-inflammatory cytokines resulting from a systemic inflammatory response to a burn injury and consequent stimulation of bone resorption is unclear. While it is known that cytokines can stimulate osteocytic and osteoblastic production of the ligand of the receptor activator of NFκB, or RANKL, it is not certain why this occurs. It was therefore hypothesized that the subsequent osteoclastic bone resorption liberates calcium from the bone matrix and somehow affects the inflammatory response. In this paper we show how the cytokine-mediated inflammatory response following severe burn injury in children results in simultaneous increase in bone resorption and up-regulation of the parathyroid calcium-sensing receptor. The acute bone resorption leads to release of calcium from the bone matrix with consequent calcium accumulation in the circulation. The up-regulation of the parathyroid calcium-sensing receptor suppresses the release of parathyroid hormone resulting in a lowering of blood calcium concentration. The simultaneous occurrences of these processes could regulate blood calcium concentration and if calcium concentration affects the inflammatory response, then the calcium-sensing receptor could, at the very least, modulate the inflammatory response by adjusting the blood calcium concentration. We describe in vitro studies in which we demonstrated that peripheral blood mononuclear cells in culture produce the chemokines MIP-1α and RANTES in proportion to the medium calcium concentration and they produce the chemokine MCP-1 in quantities inversely related to medium calcium concentration. CD14+monocytes in culture will also produce MIP-1α in direct relationship to medium calcium concentration but the correlation coefficient is markedly reduced compared to that with peripheral blood mononuclear cells. These monocytes, which possess the calcium-sensing receptor, do not produce MCP-1 in either direct or inverse relationship to medium calcium concentration. Therefore, it is possible that other peripheral blood mononuclear cells are primarily responsible for the production of chemokines in relation to calcium concentration but these cells have not yet been defined.


Assuntos
Queimaduras/imunologia , Receptores de Detecção de Cálcio/fisiologia , Animais , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Queimaduras/metabolismo , Cálcio/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo
8.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077651

RESUMO

The airway mucosa expresses protective interferon (IFN) and inflammatory cytokines in response to respiratory syncytial virus (RSV) infection. In this study, we examine the role of bromodomain containing 4 (BRD4) in mediating this innate immune response in human small airway epithelial cells. We observe that RSV induces BRD4 to complex with NF-κB/RelA. BRD4 is functionally required for expression of the NF-κB-dependent inflammatory gene regulatory network (GRN), including the IFN response factor 1 (IRF1) and IRF7, which mediate a cross talk pathway for RIG-I upregulation. Mechanistically, BRD4 is required for cyclin-dependent kinase 9 (CDK9) recruitment and phospho-Ser 2 carboxy-terminal domain (CTD) RNA polymerase (Pol) II formation on the promoters of IRF1, IRF7, and RIG-I, producing their enhanced expression by transcriptional elongation. We also find that BRD4 independently regulates CDK9/phospho-Ser 2 CTD RNA Pol II recruitment to the IRF3-dependent IFN-stimulated genes (ISGs). In vivo, poly(I·C)-induced neutrophilia and mucosal chemokine production are blocked by a small-molecule BRD4 bromodomain inhibitor. Similarly, BRD4 inhibition reduces RSV-induced neutrophilia, mucosal CXC chemokine expression, activation of the IRF7-RIG-I autoamplification loop, mucosal IFN expression, and airway obstruction. RSV infection activates BRD4 acetyltransferase activity on histone H3 Lys (K) 122, demonstrating that RSV infection activates BRD4 in vivo These data validate BRD4 as a major effector of RSV-induced inflammation and disease. BRD4 is required for coupling NF-κB to expression of inflammatory genes and the IRF-RIG-I autoamplification pathway and independently facilitates antiviral ISG expression. BRD4 inhibition may be a strategy to reduce exuberant virus-induced mucosal airway inflammation.IMPORTANCE In the United States, 2.1 million children annually require medical attention for RSV infections. A first line of defense is the expression of the innate gene network by infected epithelial cells. Expression of the innate response requires the recruitment of transcriptional elongation factors to rapidly induce innate response genes through an unknown mechanism. We discovered that RSV infection induces a complex of bromodomain containing 4 (BRD4) with NF-κB and cyclin-dependent kinase 9 (CDK9). BRD4 is required for stable CDK9 binding, phospho-Ser 2 RNA Pol II formation, and histone acetyltransferase activity. Inhibition of BRD4 blocks Toll-like receptor 3 (TLR3)-dependent neutrophilia and RSV-induced inflammation, demonstrating its importance in the mucosal innate response in vivo Our study shows that BRD4 plays a central role in inflammation and activation of the IRF7-RIG-I amplification loop vital for mucosal interferon expression. BRD4 inhibition may be a strategy for modulating exuberant mucosal airway inflammation.


Assuntos
Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Fatores Reguladores de Interferon/metabolismo , Proteínas Nucleares/metabolismo , Vírus Sincicial Respiratório Humano/patogenicidade , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Camundongos Endogâmicos C57BL , Receptores Imunológicos , Infecções por Vírus Respiratório Sincicial/patologia
9.
Am J Respir Cell Mol Biol ; 57(4): 403-410, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28481637

RESUMO

Hydrogen sulfide (H2S) is a biologically relevant signaling molecule in mammals. Along with the volatile substances nitric oxide (NO) and carbon monoxide (CO), H2S is defined as a gasotransmitter. It plays a physiological role in a variety of functions, including synaptic transmission, vascular tone, angiogenesis, inflammation, and cellular signaling. The generation of H2S is catalyzed by cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). The expression of CBS and CSE is tissue specific, with CBS being expressed predominantly in the brain, and CSE in peripheral tissues, including lungs. CSE expression and activity are developmentally regulated, and recent studies suggest that CSE plays an important role in lung alveolarization during fetal development. In the respiratory tract, endogenous H2S has been shown to participate in the regulation of important functions such as airway tone, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and inflammation. In the past few years, changes in the generation of H2S have been linked to the pathogenesis of a variety of acute and chronic inflammatory lung diseases, including asthma and chronic obstructive pulmonary disease. Recently, our laboratory made the critical discovery that cellular H2S exerts broad-spectrum antiviral activity both in vitro and in vivo, in addition to independent antiinflammatory activity. These findings have important implications for the development of novel therapeutic strategies for viral respiratory infections, as well as other inflammatory lung diseases, especially in light of recent significant efforts to generate controlled-release H2S donors for clinical therapeutic applications.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Sistema Respiratório , Infecções Respiratórias , Transdução de Sinais , Viroses , Animais , Cistationina beta-Sintase/biossíntese , Cistationina gama-Liase/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Especificidade de Órgãos , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Infecções Respiratórias/embriologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Viroses/embriologia , Viroses/metabolismo , Viroses/patologia , Viroses/virologia
10.
J Virol ; 90(21): 9618-9631, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535058

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infant and elderly populations worldwide. Currently, there is no efficacious vaccine or therapy available for RSV infection. The molecular mechanisms underlying RSV-induced acute airway disease and associated long-term consequences remain largely unknown; however, experimental evidence suggests that the lung inflammatory response plays a fundamental role in the outcome of RSV infection. High-mobility group box 1 (HMGB1) is a nuclear protein that triggers inflammation when released from activated immune or necrotic cells and drives the pathogenesis of various infectious agents. Although HMGB1 has been implicated in many inflammatory diseases, its role in RSV-induced airway inflammation has not been investigated. This study investigates the molecular mechanism of action of extracellularly released HMGB1 in airway epithelial cells (A549 and small airway epithelial cells) to establish its role in RSV infection. Immunofluorescence microscopy and Western blotting results showed that RSV infection of human airway epithelial cells induced a significant release of HMGB1 as a result of translocation of HMGB1 from the cell nuclei to the cytoplasm and subsequent release into the extracellular space. Treating RSV-infected A549 cells with antioxidants significantly inhibited RSV-induced HMGB1 extracellular release. Studies using recombinant HMGB1 triggered immune responses by activating primary human monocytes. Finally, HMGB1 released by airway epithelial cells due to RSV infection appears to function as a paracrine factor priming epithelial cells and monocytes to inflammatory stimuli in the airways. IMPORTANCE: RSV is a major cause of serious lower respiratory tract infections in young children and causes severe respiratory morbidity and mortality in the elderly. In addition, to date there is no effective treatment or vaccine available for RSV infection. The mechanisms responsible for RSV-induced acute airway disease and associated long-term consequences remain largely unknown. The oxidative stress response in the airways plays a major role in the pathogenesis of RSV. HMGB1 is a ubiquitous redox-sensitive multifunctional protein that serves as both a DNA regulatory protein and an extracellular cytokine signaling molecule that promotes airway inflammation as a damage-associated molecular pattern. This study investigated the mechanism of action of HMGB1 in RSV infection with the aim of identifying new inflammatory pathways at the molecular level that may be amenable to therapeutic interventions.


Assuntos
Proteína HMGB1/metabolismo , Monócitos/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , Células A549 , Adolescente , Adulto , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Pessoa de Meia-Idade , Monócitos/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Adulto Jovem
11.
J Infect Dis ; 214(4): 649-55, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27190183

RESUMO

BACKGROUND: Bronchiolitis causes substantial disease in young children. Previous findings had indicated that a robust innate immune response was not associated with a poor clinical outcome in bronchiolitis. This study tested the hypothesis that increased concentrations of cytokines and chemokines in nasal wash specimens were associated with decreased severity in bronchiolitis. METHODS: Children <24 months old who presented to the emergency department with signs and symptoms of bronchiolitis were eligible for enrollment. Nasal wash specimens were analyzed for viral pathogens and cytokine/chemokine concentrations. These results were evaluated with regard to disposition. RESULTS: One hundred eleven children with bronchiolitis were enrolled. A viral pathogen was identified in 91.9% of patients (respiratory syncytial virus in 51.4%, human rhinovirus in 11.7%). Higher levels of cytokines and chemokines (interferon [IFN] γ; interleukin [IL] 4, 15, and 17; CXCL10; and eotaxin) were significantly associated with a decreased risk of hospitalization. IL-17, IL-4, IFN-γ, and IFN-γ-inducible protein 10 (CXCL10 or IP-10) remained statistically significant in the multivariate analyses. CONCLUSIONS: The cytokines and chemokines significantly associated with decreased bronchiolitis severity are classified in a wide range of functional groups (T-helper 1 and 2, regulatory, and chemoattractant). The involvement of these functional groups suggest that a broadly overlapping cytokine/chemokine response is required for control of virus-mediated respiratory disease in young children.


Assuntos
Secreções Corporais/química , Bronquiolite/imunologia , Bronquiolite/patologia , Citocinas/análise , Nasofaringe/imunologia , Nasofaringe/patologia , Secreções Corporais/virologia , Estudos Transversais , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , Líquido da Lavagem Nasal , Estudos Prospectivos , Vírus/isolamento & purificação
12.
Am J Respir Cell Mol Biol ; 55(5): 684-696, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27314446

RESUMO

Hydrogen sulfide (H2S) is an endogenous gaseous transmitter whose role in the pathophysiology of several lung diseases has been increasingly appreciated. Our recent studies in vitro have shown, we believe for the first time, that H2S has an important antiviral and antiinflammatory activity in respiratory syncytial virus (RSV) infection, the leading cause of bronchiolitis and viral pneumonia in children. Our objective was to evaluate the therapeutic potential of GYY4137, a novel slow-releasing H2S donor, for the prevention and treatment of RSV-induced lung disease, as well as to investigate the role of endogenous H2S in a mouse model of RSV infection. Ten- to 12-week-old BALB/c mice treated with GYY4137, or C57BL/6J mice genetically deficient in the cystathionine γ-lyase enzyme, the major H2S-generating enzyme in the lung, were infected with RSV and assessed for viral replication, clinical disease, airway hyperresponsiveness, and inflammatory responses. Our results show that intranasal delivery of GYY4137 to RSV-infected mice significantly reduced viral replication and markedly improved clinical disease parameters and pulmonary dysfunction compared with the results in vehicle-treated control mice. The protective effect of the H2S donor was associated with a significant reduction of viral-induced proinflammatory mediators and lung cellular infiltrates. Furthermore, cystathionine γ-lyase-deficient mice showed significantly enhanced RSV-induced lung disease and viral replication compared with wild-type animals. Overall, our results indicate that H2S exerts a novel antiviral and antiinflammatory activity in the context of RSV infection and represent a potential novel pharmacological approach for ameliorating virus-induced lung disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Gasotransmissores/uso terapêutico , Sulfeto de Hidrogênio/uso terapêutico , Pulmão/virologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Quimiocinas/metabolismo , Cistationina gama-Liase/deficiência , Cistationina gama-Liase/metabolismo , Progressão da Doença , Feminino , Gasotransmissores/farmacologia , Sulfeto de Hidrogênio/farmacologia , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Compostos Organotiofosforados/farmacologia , Compostos Organotiofosforados/uso terapêutico , Pneumonia/complicações , Pneumonia/fisiopatologia , Pneumonia/virologia , Testes de Função Respiratória , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Replicação Viral/efeitos dos fármacos
13.
J Virol ; 89(5): 2628-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520509

RESUMO

UNLABELLED: Respiratory syncytial virus (RSV) is a primary etiological agent of childhood lower respiratory tract disease. Molecular patterns induced by active infection trigger a coordinated retinoic acid-inducible gene I (RIG-I)-Toll-like receptor (TLR) signaling response to induce inflammatory cytokines and antiviral mucosal interferons. Recently, we discovered a nuclear oxidative stress-sensitive pathway mediated by the DNA damage response protein, ataxia telangiectasia mutated (ATM), in cytokine-induced NF-κB/RelA Ser 276 phosphorylation. Here we observe that ATM silencing results in enhanced single-strand RNA (ssRNA) replication of RSVand Sendai virus, due to decreased expression and secretion of type I and III interferons (IFNs), despite maintenance of IFN regulatory factor 3 (IRF3)-dependent IFN-stimulated genes (ISGs). In addition to enhanced oxidative stress, RSV replication enhances foci of phosphorylated histone 2AX variant (γH2AX), Ser 1981 phosphorylation of ATM, and IKKγ/NEMO-dependent ATM nuclear export, indicating activation of the DNA damage response. ATM-deficient cells show defective RSV-induced mitogen and stress-activated kinase 1 (MSK-1) Ser 376 phosphorylation and reduced RelA Ser 276 phosphorylation, whose formation is required for IRF7 expression. We observe that RelA inducibly binds the native IFN regulatory factor 7 (IRF7) promoter in an ATM-dependent manner, and IRF7 inducibly binds to the endogenous retinoic acid-inducible gene I (RIG-I) promoter. Ectopic IRF7 expression restores RIG-I expression and type I/III IFN expression in ATM-silenced cells. We conclude that paramyxoviruses trigger the DNA damage response, a pathway required for MSK1 activation of phospho Ser 276 RelA formation to trigger the IRF7-RIG-I amplification loop necessary for mucosal IFN production. These data provide the molecular pathogenesis for defects in the cellular innate immunity of patients with homozygous ATM mutations. IMPORTANCE: RNA virus infections trigger cellular response pathways to limit spread to adjacent tissues. This "innate immune response" is mediated by germ line-encoded pattern recognition receptors that trigger activation of two, largely independent, intracellular NF-κB and IRF3 transcription factors. Downstream, expression of protective antiviral interferons is amplified by positive-feedback loops mediated by inducible interferon regulatory factors (IRFs) and retinoic acid inducible gene (RIG-I). Our results indicate that a nuclear oxidative stress- and DNA damage-sensing factor, ATM, is required to mediate a cross talk pathway between NF-κB and IRF7 through mediating phosphorylation of NF-κB. Our studies provide further information about the defects in cellular and innate immunity in patients with inherited ATM mutations.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , RNA Helicases DEAD-box/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferons/biossíntese , NF-kappa B/metabolismo , Vírus Sinciciais Respiratórios/imunologia , Vírus Sendai/imunologia , Linhagem Celular , Proteína DEAD-box 58 , Células Epiteliais/imunologia , Células Epiteliais/virologia , Inativação Gênica , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores Imunológicos , Vírus Sinciciais Respiratórios/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Vírus Sendai/fisiologia , Replicação Viral
14.
J Virol ; 89(10): 5557-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740991

RESUMO

UNLABELLED: Hydrogen sulfide (H2S) is an endogenous gaseous mediator that has gained increasing recognition as an important player in modulating acute and chronic inflammatory diseases. However, its role in virus-induced lung inflammation is currently unknown. Respiratory syncytial virus (RSV) is a major cause of upper and lower respiratory tract infections in children for which no vaccine or effective treatment is available. Using the slow-releasing H2S donor GYY4137 and propargylglycin (PAG), an inhibitor of cystathionine-γ-lyase (CSE), a key enzyme that produces intracellular H2S, we found that RSV infection led to a reduced ability to generate and maintain intracellular H2S levels in airway epithelial cells (AECs). Inhibition of CSE with PAG resulted in increased viral replication and chemokine secretion. On the other hand, treatment of AECs with the H2S donor GYY4137 reduced proinflammatory mediator production and significantly reduced viral replication, even when administered several hours after viral absorption. GYY4137 also significantly reduced replication and inflammatory chemokine production induced by human metapneumovirus (hMPV) and Nipah virus (NiV), suggesting a broad inhibitory effect of H2S on paramyxovirus infections. GYY4137 treatment had no effect on RSV genome replication or viral mRNA and protein synthesis, but it inhibited syncytium formation and virus assembly/release. GYY4137 inhibition of proinflammatory gene expression occurred by modulation of the activation of the key transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3) at a step subsequent to their nuclear translocation. H2S antiviral and immunoregulatory properties could represent a novel treatment strategy for paramyxovirus infections. IMPORTANCE: RSV is a global health concern, causing significant morbidity and economic losses as well as mortality in developing countries. After decades of intensive research, no vaccine or effective treatment, with the exception of immunoprophylaxis, is available for this infection as well as for other important respiratory mucosal viruses. This study identifies hydrogen sulfide as a novel cellular mediator that can modulate viral replication and proinflammatory gene expression, both important determinants of lung injury in respiratory viral infections, with potential for rapid translation of such findings into novel therapeutic approaches for viral bronchiolitis and pneumonia.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Infecções por Paramyxoviridae/metabolismo , Alcinos/farmacologia , Linhagem Celular , Quimiocinas/biossíntese , Quimiocinas/genética , Cistationina gama-Liase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Morfolinas/farmacologia , NF-kappa B/metabolismo , Compostos Organotiofosforados/farmacologia , Infecções por Paramyxoviridae/tratamento farmacológico , Infecções por Paramyxoviridae/etiologia , Regiões Promotoras Genéticas , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/fisiologia , Transdução de Sinais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
J Gen Virol ; 96(8): 2104-2113, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25953917

RESUMO

Human metapneumovirus (hMPV) is a common cause of respiratory tract infection in the paediatrics population. Recently, we and others have shown that retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) are essential for hMPV-induced cellular antiviral signalling. However, the contribution of those receptors to host immunity against pulmonary hMPV infection is largely unexplored. In this study, mice deficient in mitochondrial antiviral-signalling protein (MAVS), an adaptor of RLRs, were used to investigate the role(s) of these receptors in pulmonary immune responses to hMPV infection. MAVS deletion significantly impaired the induction of antiviral and pro-inflammatory cytokines and the recruitment of immune cells to the bronchoalveolar lavage fluid by hMPV. Compared with WT mice, mice lacking MAVS demonstrated decreased abilities to activate pulmonary dendritic cells (DCs) and abnormal primary T-cell responses to hMPV infection. In addition, mice deficient in MAVS had a higher peak of viral load at day 5 post-infection (p.i.) than WT mice, but were able to clear hMPV by day 7 p.i. similarly to WT mice. Taken together, our data indicate a role of MAVS-mediated pathways in the pulmonary immune responses to hMPV infection and the early control of hMPV replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/virologia , Masculino , Metapneumovirus/genética , Camundongos , Camundongos Knockout , Infecções por Paramyxoviridae/genética , Infecções por Paramyxoviridae/virologia , Linfócitos T/imunologia
16.
Am J Respir Cell Mol Biol ; 51(4): 502-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24749674

RESUMO

Human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) are leading causes of upper and lower respiratory tract infections in young children and among elderly and immunocompromised patients. The pathogenesis of hMPV-induced lung disease is poorly understood. The lung macrophage population consists of alveolar macrophages (AMs) residing at the luminal surface of alveoli and interstitial macrophages present within the parenchymal lung interstitium. The involvement of AMs in innate immune responses to virus infections remains elusive. In this study, BALB/c mice depleted of AMs by intranasal instillation of dichloromethylene bisphosphonate (L-CL2MBP) liposomes were examined for disease, lung inflammation, and viral replication after infection with hMPV or RSV. hMPV-infected mice lacking AMs exhibited improved disease in terms of body weight loss, lung inflammation, airway obstruction, and hyperresponsiveness compared with AM-competent mice. AM depletion was associated with significantly reduced hMPV titers in the lungs, suggesting that hMPV required AMs for early entry and replication in the lung. In contrast, AM depletion in the context of RSV infection was characterized by an increase in viral replication, worsened disease, and inflammation, with increased airway neutrophils and inflammatory dendritic cells. Overall, lack of AMs resulted in a broad-spectrum disruption in type I IFN and certain inflammatory cytokine production, including TNF and IL-6, while causing a virus-specific alteration in the profile of several immunomodulatory cytokines, chemokines, and growth factors. Our study demonstrates that AMs have distinct roles in the context of human infections caused by members of the Paramyxoviridae family.


Assuntos
Pulmão/imunologia , Macrófagos Alveolares/imunologia , Metapneumovirus/patogenicidade , Infecções por Paramyxoviridae/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Obstrução das Vias Respiratórias/imunologia , Obstrução das Vias Respiratórias/fisiopatologia , Obstrução das Vias Respiratórias/virologia , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pulmão/virologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Metapneumovirus/imunologia , Camundongos Endogâmicos BALB C , Infecções por Paramyxoviridae/metabolismo , Infecções por Paramyxoviridae/fisiopatologia , Infecções por Paramyxoviridae/virologia , Pneumonia/imunologia , Pneumonia/fisiopatologia , Pneumonia/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Fatores de Tempo , Replicação Viral
17.
J Virol ; 87(12): 7075-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23596302

RESUMO

Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3(-/-) MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser(2) carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-ß) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Células Epiteliais/virologia , Fator Regulador 3 de Interferon/metabolismo , Interferons/metabolismo , Pulmão/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/patogenicidade , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular , Imunoprecipitação da Cromatina , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Pulmão/citologia , Pulmão/imunologia , Proteínas de Ligação a RNA , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/imunologia , Fatores de Transcrição/genética
18.
Biochem J ; 456(2): 241-51, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24032673

RESUMO

Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. GP mutants showed large differences from native-like to complete loss of function that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity.


Assuntos
Interleucina-8/química , Receptores de Interleucina-8A/química , Receptores de Interleucina-8B/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular , Sequência Conservada , Feminino , Interleucina-8/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Neutrófilos/imunologia , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
19.
J Leukoc Biol ; 115(6): 1177-1182, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38298146

RESUMO

CXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge. Further, the KO mice show dysregulated Cxcl1, Cxcr2, and interleukin-6 levels, all of which directly impact neutrophil recruitment. Importantly, the KO mice showed no difference in monocyte recruitment post-LPS challenge or in peritoneal macrophage levels in both unchallenged and LPS-challenged mice. We conclude that Cxcl17 is a proinflammatory chemokine and that it plays an important role in the early proinflammatory response by promoting neutrophil recruitment to the insult site.


Assuntos
Quimiocinas CXC , Lipopolissacarídeos , Camundongos Knockout , Neutrófilos , Receptores de Interleucina-8B , Animais , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Lipopolissacarídeos/farmacologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Infiltração de Neutrófilos , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Inflamação/patologia , Inflamação/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
20.
Biophys J ; 105(6): 1491-501, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24048001

RESUMO

Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface ß-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface ß-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface ß-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface ß-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins.


Assuntos
Substituição de Aminoácidos , Interleucina-8/química , Prolina , Engenharia de Proteínas/métodos , Multimerização Proteica , Animais , Ligação de Hidrogênio , Interleucina-8/genética , Camundongos , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Desdobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA