Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(12): 6889-6905, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479602

RESUMO

Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


Assuntos
Esclerose Lateral Amiotrófica/genética , Homeostase/genética , Proteína FUS de Ligação a RNA/genética , Animais , Citoplasma/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Íntrons/genética , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Mutação/genética , Splicing de RNA/genética , Superóxido Dismutase-1/genética , Proteína com Valosina/genética
2.
J Vis Exp ; (147)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31107442

RESUMO

We describe here a method to obtain functional spinal and cranial motor neurons from human induced pluripotent stem cells (iPSCs). Direct conversion into motor neuron is obtained by ectopic expression of alternative modules of transcription factors, namely Ngn2, Isl1 and Lhx3 (NIL) or Ngn2, Isl1 and Phox2a (NIP). NIL and NIP specify, respectively, spinal and cranial motor neuron identity. Our protocol starts with the generation of modified iPSC lines in which NIL or NIP are stably integrated in the genome via a piggyBac transposon vector. Expression of the transgenes is then induced by doxycycline and leads, in 5 days, to the conversion of iPSCs into MN progenitors. Subsequent maturation, for 7 days, leads to homogeneous populations of spinal or cranial MNs. Our method holds several advantages over previous protocols: it is extremely rapid and simplified; it does not require viral infection or further MN isolation; it allows generating different MN subpopulations (spinal and cranial) with a remarkable degree of maturation, as demonstrated by the ability to fire trains of action potentials. Moreover, a large number of motor neurons can be obtained without purification from mixed populations. iPSC-derived spinal and cranial motor neurons can be used for in vitro modeling of Amyotrophic Lateral Sclerosis and other neurodegenerative diseases of the motor neuron. Homogeneous motor neuron populations might represent an important resource for cell type specific drug screenings.


Assuntos
Diferenciação Celular , Vetores Genéticos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Crânio/citologia , Medula Espinal/citologia , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Homeobox , Humanos , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA