Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 93(6): 1385-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23124470

RESUMO

BACKGROUND: The effects of the increase of atmospheric CO2 on agricultural productivity have been mainly analyzed through its impact on biomass yield, and little attention has been directed to quality traits, such as nutritional or organoleptic attributes. For this study, plants of hot Habanero pepper (Capsicum chinense Jacq.) were grown in growth chambers under three different CO2 levels: 380 (normal atmospheric value), 760 and 1140 µmol mol(-1), and their effects on pod yield, size, color and pungency, were monitored. RESULTS: The total number of pods per plant increased by 88.5% at the highest CO2 , in comparison to plants grown at normal CO2 conditions. Pod size and yield per plant also increased when plants were grown at the highest CO2 concentration (partial pressure). Furthermore, total capsaicinoids contents in ripe peppers under a high CO2 atmosphere were 27% higher than those from plants under lower concentrations, but it was not the case for immature pods. CONCLUSION: These data suggest that the increase of atmospheric CO2 could modify specific routes of secondary metabolism as well as others desirable traits, thus affecting the quality of Capsicum pepper products.


Assuntos
Atmosfera , Capsaicina/metabolismo , Capsicum/metabolismo , Dióxido de Carbono/metabolismo , Frutas/metabolismo , Biomassa , Capsaicina/análogos & derivados , Capsicum/efeitos dos fármacos , Capsicum/crescimento & desenvolvimento , Dióxido de Carbono/farmacologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento
2.
Plants (Basel) ; 12(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299048

RESUMO

Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.

3.
PeerJ ; 9: e12088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616606

RESUMO

Plant-insect interactions are a determining factor for sustainable crop production. Although plants can resist or tolerate herbivorous insects to varying degrees, even with the use of pesticides, insects can reduce plant net productivity by as much as 20%, so sustainable strategies for pest control with less dependence on chemicals are needed. Selecting plants with optimal resistance and photosynthetic traits can help minimize damage and maintain productivity. Here, 27 landrace accessions of lima beans, Phaseolus lunatus L., from the Yucatan Peninsula were evaluated in the field for morphological resistance traits, photosynthetic characteristics, insect damage and seed yield. Variation was found in physical leaf traits (number, area, and dry mass of leaves; trichome density, specific leaf thickness and hardness) and in physiological traits (photosynthetic rate, stomatal conductance, intercellular carbon, water-use efficiency, and transpiration). Five accessions (JMC1325, JMC1288, JMC1339, JMC1208 and JMC1264) had the lowest index for cumulative damage with the highest seed yield, although RDA analysis uncovered two accessions (JMC1339, JMC1288) with strong positive association of seed yield and the cumulative damage index with leaf production, specific leaf area (SLA) and total leaf area. Leaf traits, including SLA and total leaf area are important drivers for optimizing seed yield. This study identified 12 important morphological and physiological leaf traits for selecting landrace accessions of P. lunatus for high yields (regardless of damage level) to achieve sustainable, environmentally safe crop production.

4.
PLoS One ; 9(11): e111402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25365043

RESUMO

Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature - leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature-leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions.


Assuntos
Adaptação Biológica , Capsicum/fisiologia , Temperatura Alta , Capsicum/crescimento & desenvolvimento , Folhas de Planta , Estômatos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA