Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Microbiol ; 24(9): 4299-4316, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35506300

RESUMO

Since the beginning of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the gastrointestinal (GI) tract has emerged as an important organ influencing the propensity to and potentially the severity of the related COVID-19 disease. However, the contribution of the SARS-CoV-2 intestinal infection on COVID-19 pathogenesis remains to be clarified. In this exploratory study, we highlighted a possible link between alterations in the composition of the gut microbiota and the levels of SARS-CoV-2 RNA in the gastrointestinal tract, which could be more important than the presence of SARS-CoV-2 in the respiratory tract, COVID-19 severity and GI symptoms. As established by metaproteomics, altered molecular functions in the microbiota profiles of high SARS-CoV-2 RNA level faeces highlight mechanisms such as inflammation-induced enterocyte damage, increased intestinal permeability and activation of immune response that may contribute to vicious cycles. Uncovering the role of this gut microbiota dysbiosis could drive the investigation of alternative therapeutic strategies to favour the clearance of the virus and potentially mitigate the effect of the SARS-CoV-2 infection.


Assuntos
COVID-19 , Microbiota , Disbiose , Fezes , Humanos , Microbiota/genética , RNA Viral/genética , SARS-CoV-2/genética
2.
Anal Bioanal Chem ; 413(29): 7265-7275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34013402

RESUMO

COVID-19 is the most disturbing pandemic of the past hundred years. Its causative agent, the SARS-CoV-2 virus, has been the subject of an unprecedented investigation to characterize its molecular structure and intimate functioning. While markers for its detection have been proposed and several diagnostic methodologies developed, its propensity to evolve and evade diagnostic tools and the immune response is of great concern. The recent spread of new variants with increased infectivity requires even more attention. Here, we document how shotgun proteomics can be useful for rapidly monitoring the evolution of the SARS-CoV-2 virus. We evaluated the heterogeneity of purified SARS-CoV-2 virus obtained after culturing in the Vero E6 cell line. We found that cell culture induces significant changes that are translated at the protein level, such changes being detectable by tandem mass spectrometry. Production of viral particles requires careful quality control which can be easily performed by shotgun proteomics. Although considered relatively stable so far, the SARS-CoV-2 genome turns out to be prone to frequent variations. Therefore, the sequencing of SARS-CoV-2 variants from patients reporting only the consensus genome after its amplification would deserve more attention and could benefit from more in-depth analysis of low level but crystal-clear signals, as well as complementary and rapid analysis by shotgun proteomics.


Assuntos
Genoma Viral , Proteômica/métodos , SARS-CoV-2/isolamento & purificação , Sequência de Aminoácidos , Técnicas de Cultura de Células , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Espectrometria de Massas em Tandem/métodos , Proteínas Virais/química , Virulência
3.
J Clin Microbiol ; 59(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33115844

RESUMO

Rapid and reliable detection and identification of Francisella tularensis (a tier 1 select agent) are of primary interest for both medical and biological threat surveillance purposes. The Biotoxis qPCR detection kit is a real-time quantitative PCR (qPCR) assay designed for the detection of Bacillus anthracis, Yersinia pestis, and F. tularensis in environmental or biological samples. Here, we evaluated its performance for detecting F. tularensis in comparison to previously validated qPCR assays. The Biotoxis qPCR was positive for 87/87 F. tularensis subsp. holarctica (type B) strains but also for F. tularensis subsp. novicida It was negative for Francisella philomiragia and 24/24 strains belonging to other bacterial species. For 31 tularemia clinical specimens, the Biotoxis qPCR displayed a sensitivity between 90.32% and 96.55%, compared to qPCR tests targeting ISFtu2 or a type B-specific DNA sequence, respectively. All 30 nontularemia clinical specimens were Biotoxis qPCR negative. For water samples, the Biotoxis qPCR limit of detection was 1,000 CFU/liter of F. tularensis For 57 environmental water samples collected in France, the Biotoxis qPCR was positive for 6/15 samples positive for ISFtu2 qPCR and 4/4 positive for type B qPCR. In conclusion, the Biotoxis qPCR detection kit demonstrated good performances for F. tularensis detection in various biological and environmental samples, although cross-amplification of F. tularensis subsp. novicida must be considered. This plate format assay could be useful to test a large number of clinical or environmental specimens, especially in the context of natural or intentional tularemia outbreaks.


Assuntos
Francisella tularensis , Tularemia , Yersinia pestis , França , Francisella , Francisella tularensis/genética , Humanos , Tularemia/diagnóstico
4.
Emerg Microbes Infect ; 9(1): 1712-1721, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32619390

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and is continuing to spread rapidly around the globe. No effective vaccine is currently available to prevent COVID-19, and intense efforts are being invested worldwide into vaccine development. In this context, all technology platforms must overcome several challenges resulting from the use of an incompletely characterized new virus. These include finding the right conditions for virus amplification for the development of vaccines based on inactivated or attenuated whole viral particles. Here, we describe a shotgun tandem mass spectrometry workflow, the data produced can be used to guide optimization of the conditions for viral amplification. In parallel, we analysed the changes occurring in the host cell proteome following SARS-CoV-2 infection to glean information on the biological processes modulated by the virus that could be further explored as potential drug targets to deal with the pandemic.


Assuntos
Antígenos Virais/biossíntese , Betacoronavirus/imunologia , Proteômica/métodos , Vacinas Virais/imunologia , Vírion/imunologia , Animais , Antígenos Virais/imunologia , Chlorocebus aethiops , SARS-CoV-2 , Espectrometria de Massas em Tandem , Células Vero
5.
Front Microbiol ; 9: 2295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319592

RESUMO

Despite scientific advances, bacterial spores remain a major preoccupation in many different fields, such as the hospital, food, and CBRN-E Defense sector. Although many disinfectant technologies exist, there is a lack for the decontamination of difficult to access areas, outdoor sites, or large interior volumes. This study evaluates the decontamination efficiency of an aqueous foam containing hydrogen peroxide, with the efficiency of disinfectant in the liquid form on vertical surfaces contaminated by Bacillus thurengiensis spores. The decontamination efficiency impact of the surfactant and stabilizer agents in the foam and liquid forms was evaluated. No interferences were observed with these two chemical additives. Our results indicate that the decontamination kinetics of both foam and liquid forms are similar. In addition, while the foam form was as efficient as the liquid solution at 4°C, it was even more so at 30°C. The foam decontamination reaction follows the Arrhenius law, which enables the decontamination kinetic to be predicted with the temperature. Moreover, the foam process used via spraying or filling is more attractive due to the generation of lower quantity of liquid effluents. Our findings highlight the greater suitability of foam to decontaminate difficult to access and high volume facilities compared to liquid solutions.

6.
Talanta ; 147: 581-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592649

RESUMO

The dinoflagellates of Alexandrium genus are known to be producers of paralytic shellfish toxins that regularly impact the shellfish aquaculture industry and fisheries. Accurate detection of Alexandrium including Alexandrium minutum is crucial for environmental monitoring and sanitary issues. In this study, we firstly developed a quantitative lateral flow immunoassay (LFIA) using super-paramagnetic nanobeads for A. minutum whole cells. This dipstick assay relies on two distinct monoclonal antibodies used in a sandwich format and directed against surface antigens of this organism. No sample preparation is required. Either frozen or live cells can be detected and quantified. The specificity and sensitivity are assessed by using phytoplankton culture and field samples spiked with a known amount of cultured A. minutum cells. This LFIA is shown to be highly specific for A. minutum and able to detect reproducibly 10(5)cells/L within 30min. The test is applied to environmental samples already characterized by light microscopy counting. No significant difference is observed between the cell densities obtained by these two methods. This handy super-paramagnetic lateral flow immnunoassay biosensor can greatly assist water quality monitoring programs as well as ecological research.


Assuntos
Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais , Dinoflagellida/isolamento & purificação , Poluentes da Água/isolamento & purificação , Anticorpos Monoclonais/química , Cromatografia/métodos , Dinoflagellida/imunologia , Monitoramento Ambiental , Eutrofização , França , Imunoensaio , Fenômenos Magnéticos , Nanoestruturas/química
7.
J Microbiol Methods ; 104: 49-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24927989

RESUMO

In this paper, a simple detection of a toxic algae, Alexandrium minutum, was developed using highly sensitive quartz crystal microbalance. In terms of performance, compared with other conventional analytical tools, the main interest of our immunosensor is based on a fast and direct detection of these living cells. This system requires the use of one monoclonal antibody directed against the surface antigen of A. minutum. We demonstrate that the whole living and motile algae are caught and detected. The high specificity of the biosensor is also demonstrated by testing several other dinoflagellate species. The frequency shift is correlated to the A. minutum cell concentration. This simple system is potentially promising for environmental monitoring purposes.


Assuntos
Técnicas Biossensoriais/métodos , Dinoflagellida/isolamento & purificação , Técnicas de Microbalança de Cristal de Quartzo/métodos , Anticorpos Monoclonais/análise , Antígenos/análise , Técnicas Biossensoriais/instrumentação , Dinoflagellida/química , Técnicas de Microbalança de Cristal de Quartzo/instrumentação , Sensibilidade e Especificidade
8.
Biosens Bioelectron ; 25(5): 1235-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19857953

RESUMO

Harmful algal blooms represent a major threat to marine production, and particularly to shellfish farming. Current methods for analyzing environmental samples are tedious and time consuming because they require taxonomists and animal experiments. New rapid detection methods, such as immunoassays, are sought for alerting purposes and for the study of algal ecodynamics in their natural environment. Alexandrium minutum, which causes paralytic shellfish poisoning, occurs with increasing frequency along European coasts. We have developed a one step immunochromatographic assay which is based on the principle of immunochromatographic analysis and involves the use of two distinct monoclonal antibodies directed against surface antigens of A. minutum. The primary specific antibody was conjugated with colloidal gold, and the secondary antibody (capture reagent) is immobilized on a strip of nitrocellulose membrane. We could demonstrate that whole algae are able to diffuse without restriction in the porous material. The assay time for this qualitative but highly specific assay was less than 15 min, suitable for rapid on-site testing.


Assuntos
Técnicas Biossensoriais/instrumentação , Cromatografia/instrumentação , Dinoflagellida/isolamento & purificação , Imunoensaio/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Biochem Biophys Res Commun ; 325(2): 388-94, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15530404

RESUMO

The HAH1 metallochaperone is a key protein implicated in copper homeostasis in human cells. Using as solid-phase based assay completed with Biacore studies, we provided evidence that HAH1 forms homo-dimers in the presence of copper. Biacore analysis allowed us to determine the kinetic parameters of this interaction, characterised by an apparent affinity constant of 6muM. Moreover, we demonstrated that copper-loaded HAH1 interacts independently with each of the six individual metal-binding domains of the copper-translocating Menkes ATPase. Finally, the homo-dimerisation of the metallochaperone was confirmed in living cells by using fluorescence resonance energy transfer. Results have been discussed in the context of intracellular copper control.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/química , Cobre/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Quelantes/farmacologia , Chlorocebus aethiops , Cobre/farmacologia , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre , Dimerização , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Cinética , Proteínas Ligantes de Maltose , Metalochaperonas , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
10.
Anal Biochem ; 308(2): 247-54, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12419336

RESUMO

The p53 protein is a tumor suppressor that protects the organism against malignant consequences of DNA damage. Interaction of p53 with numerous cellular or viral proteins regulates its functional activity either positively or negatively. An approach leading to identification of such protein interactions directly in a cell extract could be of help in the development of screening assays to search for drugs acting on p53 in its cellular environment, either by disrupting its association with inhibitory proteins or by increasing its affinity for activating proteins. We show that the homogeneous time-resolved fluorescence (HTRF) assay based on the time-resolved amplified cryptate emission (TRACE) technology allows identification of such an interaction by simply adding a mixture of two labeled monoclonal antibodies, directly in a cellular extract. We validate this assay by studying p53/SV40-LTAg interactions. The antibodies directed against genuine p53 and SV40-LTAg epitopes were labeled with europium cryptate (donor) and XL665, a crosslinked allophycocyanin (acceptor), respectively. We demonstrated that a nonradiative energy transfer occurs between labeled antibodies only when p53 interacts with SV40-LTag, which opens up the possibility of extending this approach to other p53 partners to search for drugs that restore p53 tumor-suppressor activity.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Fluorimunoensaio/métodos , Proteína Supressora de Tumor p53/metabolismo , Animais , Anticorpos Monoclonais , Antígenos Transformantes de Poliomavirus/genética , Baculoviridae/genética , Células COS , Ensaio de Imunoadsorção Enzimática , Haplorrinos , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Plasmídeos , Ligação Proteica , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Transfecção , Proteína Supressora de Tumor p53/genética
11.
J Biol Chem ; 277(34): 30950-7, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12029083

RESUMO

We have solved the crystal structures of Clostridium botulinum C3 exoenzyme free and complexed to NAD in the same crystal form, at 2.7 and 1.95 A, respectively. The asymmetric unit contains four molecules, which, in the free form, share the same conformation. Upon NAD binding, C3 underwent various conformational changes, whose amplitudes were differentially limited in the four molecules of the crystal unit. A major rearrangement concerns the loop that contains the functionally important ARTT motif (ADP-ribosyltransferase toxin turn-turn). The ARTT loop undergoes an ample swinging motion to adopt a conformation that covers the nicotinamide moiety of NAD. In particular, Gln-212, which belongs to the ARTT motif, flips over from a solvent-exposed environment to a buried conformation in the NAD binding pocket. Mutational experiments showed that Gln-212 is neither involved in NAD binding nor in the NAD-glycohydrolase activity of C3, whereas it plays a critical role in the ADP-ribosyl transfer to the substrate Rho. We observed additional NAD-induced movements, including a crab-claw motion of a subdomain that closes the NAD binding pocket. The data emphasized a remarkable NAD-induced plasticity of the C3 binding pocket and suggest that the NAD-induced ARTT loop conformation may be favored by the C3-NAD complex to bind to the substrate Rho. Our structural observations, together with a number of mutational experiments suggest that the mechanisms of Rho ADP-ribosylation by C3-NAD may be more complex than initially anticipated.


Assuntos
ADP Ribose Transferases/química , Toxinas Botulínicas , NAD/metabolismo , ADP Ribose Transferases/metabolismo , Difosfato de Adenosina/química , Adenosina Difosfato Ribose/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA