RESUMO
BACKGROUND: The microenvironment and stress factors like glucocorticoids have a strong influence on breast cancer progression but their role in the first stages of breast cancer and, particularly, in myoepithelial cell regulation remains unclear. Consequently, we investigated the role of glucocorticoids in ductal carcinoma in situ (DCIS) in breast cancer, focusing specially on myoepithelial cells. METHODS: To clarify the role of glucocorticoids at breast cancer onset, we evaluated the effects of cortisol and corticosterone on epithelial and myoepithelial cells using 2D and 3D in vitro and in vivo approaches and human samples. RESULTS: Glucocorticoids induce a reduction in laminin levels and favour the disruption of the basement membrane by promotion of myoepithelial cell apoptosis in vitro. In an in vivo stress murine model, increased corticosterone levels fostered the transition from DCIS to invasive ductal carcinoma (IDC) via myoepithelial cell apoptosis and disappearance of the basement membrane. RU486 is able to partially block the effects of cortisol in vitro and in vivo. We found that myoepithelial cell apoptosis is more frequent in patients with DCIS+IDC than in patients with DCIS. CONCLUSIONS: Our findings show that physiological stress, through increased glucocorticoid blood levels, promotes the transition from DCIS to IDC, particularly by inducing myoepithelial cell apoptosis. Since this would be a prerequisite for invasive features in patients with DCIS breast cancer, its clinical management could help to prevent breast cancer progression to IDC.
Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Ductal de Mama/sangue , Carcinoma Intraductal não Infiltrante/sangue , Glucocorticoides/sangue , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Laminina/genética , Camundongos , Mioepitelioma/sangue , Mioepitelioma/genética , Mioepitelioma/patologia , Microambiente Tumoral/genéticaRESUMO
In cancer treatment, radiation therapy (RT) induces direct tumor cell death due to DNA damage, but it also enhances the deaths of radiosensitive immune cells and is followed by local relapse and up-regulation of immune checkpoint ligand PD-L1. Since the binding between PD-1 and PD-L1 curtails anti-tumor immunities, combining RT and PD-L1 inhibitor, anti-PD-L1, is a potential method to improve the treatment efficacy by RT. Some experiments support this hypothesis by showing that the combination of ionizing irradiation (IR) and anti-PD-L1 improves tumor reduction comparing to the monotherapy of IR or anti-PD-L1. In this work, we create a simplified ODE model to study the order of tumor growths under treatments of IR and anti-PD-L1. Our synergy analysis indicates that both IR and anti-PD-L1 improve the tumor reduction of each other, when IR and anti-PD-L1 are given simultaneously. When giving IR and anti-PD-L1 separately, a high dosage of IR should be given first to efficiently reduce tumor load and then followed by anti-PD-L1 with strong efficacy to maintain the tumor reduction and slow down the relapse. Increasing the duration of anti-PD-L1 improves the tumor reduction, but it cannot prolong the duration that tumor relapses to the level of the control case. Under some simplification, we also prove that the model has an unstable tumor free equilibrium and a locally asymptotically stable tumor persistent equilibrium. Our bifurcation diagram reveals a transition from tumor elimination to tumor persistence, as the tumor growth rate increases. In the tumor persistent case, both anti-PD-L1 and IR can reduce tumor amount in the long term.
Assuntos
Neoplasias , Neoplasias/imunologia , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Humanos , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Conceitos Matemáticos , Modelos TeóricosRESUMO
Nerve fibers accompany blood and lymphatic vessels all over the body. An extensive amount of knowledge has been obtained with regard to tumor angiogenesis and tumor lymphangiogenesis, yet little is known about the potential biological effects of "neoneurogenesis". Cancer cells can exploit the advantage of the factors released by the nerve fibers to generate a positive microenvironment for cell survival and proliferation. At the same time, they can stimulate the formation of neurites by secreting neurotrophic factors and axon guidance molecules. The neuronal influence on the biology of a neoplasm was initially described several decades ago. Since then, an increasing amount of experimental evidence strongly suggests the existence of reciprocal interactions between cancer cells and nerves in humans. Moreover, researchers have been able to demonstrate a crosstalk between cancer cells and nerve fibers as a strategy for survival. Despite all these evidence, a lot remains to be done in order to clarify the role of neurotransmitters, neuropeptides, and their associated receptor-initiated signaling pathways in the development and progression of cancer, and response to therapy. A global-wide characterization of the neurotransmitters or neuropeptides present in the tumor microenvironment would provide insights into the real biological influences of the neuronal tissue on tumor progression. This review is intended to discuss our current understanding of neurosignaling in cancer and its potential implications on cancer prevention and therapy. The review will focus on the soluble factors released by cancer cells and nerve endings, their biological effects and their potential relevance in the treatment of cancer.
Assuntos
Neoplasias/etiologia , Neurônios/fisiologia , Progressão da Doença , Humanos , Neuropeptídeos/fisiologia , Neurotransmissores/fisiologiaRESUMO
NK1 is a tachykinin receptor highly relevant to tumorigenesis and metastasis development in breast cancer and other carcinomas. Despite the substantial efforts done to develop potent NK1 receptor antagonists, none of these antagonists had shown good antitumor activity in clinical trials. Now, we have tested the effect of inhibition of the neuropeptide Substance P (SP), a NK1 ligand, as a potential therapeutic approach in cancer. We found that the inhibition of SP with antibodies strongly inhibit cell growth and induce apoptosis in breast, colon, and prostate cancer cell lines. These effects were accompained by a decrease in the mitogen-activated kinase singaling pathway. Interestingly, in some cell lines SP abrogation decreased the steady state of Her2 and EGFR, suggesting that SP-mediated signaling is important for the basal activity of these ErbB receptors. In consequence, we observed a blockade of the cell cycle progression and the inhibition of several cell cycle-related proteins including mTOR. SP inhibition also induced cell death in cell lines resistant to Lapatinib and Trastuzumab that have increased levels of active Her2, suggesting that this therapeutic approach could be also effective for those cancers resistant to current anti-ErbB therapies. Thus, we propose a new therapeutic strategy for those cancers that express NK1 receptor and/or other tachykinin receptors, based in the immuno-blockade of the neuropeptide SP.
Assuntos
Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Substância P/antagonistas & inibidores , Anticorpos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lapatinib , Ligantes , Masculino , Neoplasias/patologia , Antagonistas dos Receptores de Neurocinina-1 , Piperidinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Quinazolinas/farmacologia , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância P/imunologia , TrastuzumabRESUMO
BACKGROUND: CD95 is a death receptor controlling not only apoptotic pathways but also activating mechanisms promoting tumor growth. During the acquisition of chemoresistance to oxaliplatin there is a progressive loss of CD95 expression in colon cancer cells and a decreased ability of this receptor to induce cell death. The aim of this study was to characterize some key cellular responses controlled by CD95 signaling in oxaliplatin-resistant colon cancer cells. RESULTS: We show that CD95 triggering results in an increased metastatic ability in resistant cells. Moreover, oxaliplatin treatment itself stimulates cell migration and decreases cell adhesion through CD95 activation, since CD95 expression inhibition by siRNA blocks the promigratory effects of oxaliplatin. These promigratory effects are related to the epithelia-to-mesenchymal transition (EMT) phenomenon, as evidenced by the up-regulation of some transcription factors and mesenchymal markers both in vitro and in vivo. CONCLUSIONS: We conclude that oxaliplatin treatment in cells that have acquired resistance to oxaliplatin-induced apoptosis results in tumor-promoting effects through the activation of CD95 signaling and by inducing EMT, all these events jointly contributing to a metastatic phenotype.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Receptor fas/metabolismo , Antineoplásicos/farmacologia , Sequência de Bases , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Citometria de Fluxo , Imunofluorescência , Humanos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Reação em Cadeia da Polimerase , RNA Interferente PequenoRESUMO
Insulin-like growth factor-I (IGF-I) is thought to have antiapoptotic and mitogenic properties in colorectal cancer, whereas IGF-binding protein-3 (IGFBP-3) seems to exert a pro-apoptotic effect. Additionally, matrix metalloproteinase-7 (MMP-7), an enzyme with in vitro ability to degrade IGFBP-3, has been shown to be a prognostic factor in advanced colorectal cancer (ACRC). We studied whether chemotherapy treatment for ACRC modulates IGF-I, IGFBP-3, and MMP-7 serum levels. In 41 patients undergoing first-line therapy for ACRC, serum levels of IGF-I, IGFBP-3, and MMP-7 were measured with immunoassays at baseline and every 3 months until progressive disease, or a maximum of five determinations, during a chemotherapy regimen of either FOLFOX or FOLFIRI therapies. Associations were assessed for paired samples, using t-test or Wilcoxon ranks test depending on normality of the variable, verified with Shapiro-Wilk test. An average of four extractions (range 3-5) were done, for a total of 157 determinations. Mean pretreatment values of IGF-I, IGFBP-3, and MMP-7 were 83 (95% CI, 73-92) ng/ml, 2372 (95% CI, 2121-2623) ng/ml, and 10.6 (95% CI, 7.21-13.98) ng/ml respectively. No significant changes in IGF-I were found, but a significant increase in IGFBP-3 serum concentrations was observed during or after chemotherapy treatment without progressive disease, compared with basal levels (P<0.001). A significant decrease in IGFBP-3 to 1983 ng/ml (95% CI, 1675-2292) and a significant increase in MMP-7 levels to 14.6 (7.6-21.7) ng/ml were observed at progression of disease compared with baseline and treatment levels (P<0.001). This study shows that IGFBP-3 and MMP-7 serum levels change during chemotherapy treatment. The increased MMP-7 levels at disease progression support the hypothesis that this protease could play a role in acquired resistance by degrading IGFBP-3.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/sangue , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 7 da Matriz/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Fluoruracila/uso terapêutico , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Leucovorina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Compostos Organoplatínicos/uso terapêuticoRESUMO
Histamine receptor 1 (HRH1) belongs to the rhodopsin-like G-protein-coupled receptor family. Its activation by histamine triggers cell proliferation, embryonic development, and tumor growth. We recently established that HRH1 is up-regulated in basal and human epidermal growth factor receptor 2 (HER2)-enriched human breast tumors and that its expression correlates with a worse prognosis. Nevertheless, the functional role of HRH1 in basal and HER2-targeted therapy-resistant breast cancer (BC) progression has not yet been addressed. Using terfenadine, a selective chemical inhibitor of HRH1, we showed that the inhibition of HRH1 activity in basal BC cells leads to sub-G0 cell accumulation, suppresses proliferation, promotes cell motility and triggers the activation of extracellular signal-regulated kinase (ERK) signaling, initiating the mitochondrial apoptotic pathway. Furthermore, HER2-targeted therapy-resistant cells express higher levels of HRH1 and are more sensitive to terfenadine treatment. Moreover, in vivo experiments showed that terfenadine therapy reduced the tumor growth of basal and trastuzumab-resistant BC cells. In conclusion, our results suggest that targeting HRH1 is a promising new clinical approach to consider that could enhance the effectiveness of current therapeutic treatment in patients with basal and BC tumors resistant to HER2-targeted therapies.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas não Sedativos dos Receptores H1 da Histamina/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Terfenadina/administração & dosagem , Trastuzumab/administração & dosagem , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Humanos , Células MCF-7 , Camundongos , Neoplasia de Células Basais/tratamento farmacológico , Neoplasia de Células Basais/metabolismo , Receptor ErbB-2/metabolismo , Terfenadina/farmacologia , Trastuzumab/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Despite early detection of breast cancer, patients' survival may be compromised if the breast cancer cells (BCCs) enter the bone marrow (BM). It is highly probable that BCCs enter the BM long before clinical detection. An in vitro coculture model with BM stroma and BCCs (cell lines; primary cells from stage III BC, n = 7, and stage M0, n = 3) mimicked early entry of BCCs into the BM. In coculture, BCCs exhibit contact inhibition and do not require otherwise needed growth supplements. Stromal growth rate was increased 2-fold in coculture. The inclusion of BCCs in stromal support of long-term culture-initiating cell assay frequencies show no difference (38 +/- 3 versus 36 +/- 6). Nontumorigenic breast cells (patients and cell lines) did not survive in coculture, suggesting that the model could select for malignant population in surgical breast tissues. Cocultures were able to select cells with 73 +/- 7% cloning efficiencies and with the ability to form cocultures with BM stroma. Preprotachykinin-I (PPT-I), a gene that is conserved by evolution, facilitates BCC integration as part of the stromal compartment. This was deduced as follows: (a) nontumorigenic breast cells (n = 4) genetically engineered to express PPT-I and led to anchorage-independent growth, foci formation, and formation of cocultures; and (b) suppression of PPT-I in BCCs (n = 5) with pPMSKH1-PPT-I small interfering RNA reverted the cells to nontumorigenic phenotypes and was undetectable in the BM nude mice. The evidence supports that the PPT-I gene facilitates the integration of BCCs in the stromal compartment during a period before clinical detection, without disrupting hematopoietic activity.
Assuntos
Células da Medula Óssea/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Precursores de Proteínas/genética , Taquicininas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/patologia , Neoplasias da Medula Óssea/secundário , Divisão Celular/fisiologia , Técnicas de Cocultura , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Precursores de Proteínas/fisiologia , Células Estromais/patologia , Taquicininas/fisiologia , Transplante Heterólogo , Células Tumorais CultivadasRESUMO
The nervous system is now recognized to be a relevant component of the tumor microenvironment. Receptors for neuropeptides and neurotransmitters have been identified in breast cancer. However, very little is known about the role of neurogenes in regulating breast cancer progression. Our purpose was to identify neurogenes associated with breast cancer tumorigenesis with a potential to be used as biomarker and/or targets for treatment. We used three databases of human genes: GeneGo, GeneCards and Eugenes to generate a list of 1266 relevant neurogenes. Then we used bioinformatics tools to interrogate two published breast cancer databases SAGE and MicMa (n=96) and generated a list of 7 neurogenes that are differentially express among breast cancer subtypes. The clinical potential was further investigated using the GOBO database (n=1881). We identified 6 neurogenes that are differentially expressed among breast cancer subtypes and whose expression correlates with prognosis. Histamine receptor1 (HRH1), neuropilin2 (NRP2), ephrin-B1 (EFNB1), neural growth factor receptor (NGFR) and amyloid precursor protein (APP) were differentially overexpressed in basal and HER2-enriched tumor samples and syntaxin 1A (STX1A) was overexpressed in HER2-enriched and luminal B tumors. Analysis of HRH1, NRP2, and STX1A expression using the GOBO database showed that their expression significantly correlated with a shorter overall survival (p < 0.0001) and distant metastasis-free survival (p < 0.0001). In contrast, elevated co-expression of NGFR, EFNB1 and APP was associated with longer overall (p < 0.0001) and metastasis-free survival (p < 0.0001). We propose that HRH1, NRP2, and STX1A can be used as prognostic biomarkers and therapeutic targets for basal and HER2-enriched breast cancer subtypes.
Assuntos
Neoplasias da Mama/genética , Neurogênese/genética , Neuropeptídeos/genética , Feminino , Expressão Gênica/genética , Humanos , Prognóstico , Fatores de Risco , Microambiente TumoralRESUMO
PURPOSE: ABTL0812 is a novel first-in-class, small molecule which showed antiproliferative effect on tumor cells in phenotypic assays. Here we describe the mechanism of action of this antitumor drug, which is currently in clinical development. EXPERIMENTAL DESIGN: We investigated the effect of ABTL0812 on cancer cell death, proliferation, and modulation of intracellular signaling pathways, using human lung (A549) and pancreatic (MiaPaCa-2) cancer cells and tumor xenografts. To identify cellular targets, we performed in silico high-throughput screening comparing ABTL0812 chemical structure against ChEMBL15 database. RESULTS: ABTL0812 inhibited Akt/mTORC1 axis, resulting in impaired cancer cell proliferation and autophagy-mediated cell death. In silico screening led us to identify PPARs, PPARα and PPARγ as the cellular targets of ABTL0812. We showed that ABTL0812 activates both PPAR receptors, resulting in upregulation of Tribbles-3 pseudokinase (TRIB3) gene expression. Upregulated TRIB3 binds cellular Akt, preventing its activation by upstream kinases, resulting in Akt inhibition and suppression of the Akt/mTORC1 axis. Pharmacologic inhibition of PPARα/γ or TRIB3 silencing prevented ABTL0812-induced cell death. ABTL0812 treatment induced Akt inhibition in cancer cells, tumor xenografts, and peripheral blood mononuclear cells from patients enrolled in phase I/Ib first-in-human clinical trial. CONCLUSIONS: ABTL0812 has a unique and novel mechanism of action, that defines a new and drugable cellular route that links PPARs to Akt/mTORC1 axis, where TRIB3 pseudokinase plays a central role. Activation of this route (PPARα/γ-TRIB3-Akt-mTORC1) leads to autophagy-mediated cancer cell death. Given the low toxicity and high tolerability of ABTL0812, our results support further development of ABTL0812 as a promising anticancer therapy. Clin Cancer Res; 22(10); 2508-19. ©2015 AACR.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
PURPOSE: To evaluate the clinical significance of the detection of circulating melanoma cells in patients treated with adjuvant interferon and to determine their potential value as a marker of interferon response. PATIENTS AND METHODS: We prospectively analyzed 616 peripheral-blood samples from 120 melanoma patients with stage IIA (n = 33), IIB (n = 22), III (n = 50), or IV (surgically resected) (n = 15) disease receiving adjuvant interferon alfa-2b therapy. Tyrosinase mRNA was assayed by reverse transcriptase polymerase chain reaction (RT-PCR) as a marker of circulating melanoma cells before the start of interferon and every 2 to 3 months thereafter. RESULTS: With a median follow-up time of 32.3 months (range, 7.1 to 77.5 months), 47 patients (39.8%) relapsed and 31 (26%) died. During adjuvant interferon treatment, 76 patients (64%) had undetected circulating melanoma cells and 44 patients (36%) had a positive RT-PCR result in at least one sample. Actuarial 5-year disease-free survival was 62% in patients with persistently negative RT-PCR during interferon treatment and 38% for patients with positive RT-PCR during interferon (P =.02). Actuarial 5-year overall survival was 75% and 50%, respectively (P =.03). CONCLUSION: Patients with melanoma and tyrosinase mRNA detected in the blood during adjuvant interferon therapy had a worse prognosis compared with patients with undetected tyrosinase mRNA during treatment. Further investigation into the detection of circulating melanoma cells as a surrogate marker of response to adjuvant interferon therapy is warranted.
Assuntos
Antineoplásicos/uso terapêutico , Interferon-alfa/uso terapêutico , Melanoma/sangue , Monofenol Mono-Oxigenase/sangue , RNA Mensageiro/sangue , RNA Neoplásico/sangue , Neoplasias Cutâneas/sangue , Análise Atuarial , Biomarcadores Tumorais/sangue , Quimioterapia Adjuvante , Intervalo Livre de Doença , Feminino , Humanos , Interferon alfa-2 , Masculino , Melanoma/tratamento farmacológico , Pessoa de Meia-Idade , Células Neoplásicas Circulantes , Estudos Prospectivos , Proteínas Recombinantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/tratamento farmacológicoRESUMO
OBJECTIVE: The cellular and molecular mechanisms of hematopoietic stimulation have been studied. However, an understanding of negative effects in the hematopoietic system remains elusive. To this end, we studied the effects of vasoactive intestinal peptide (VIP) on bone marrow (BM) progenitors. MATERIALS AND METHODS: Different BM cell subsets were used to perform clonogenic assay for granulocytic (CFU-GM) or erythroid (BFU-E and CFU-E) progenitors with 10(-7)-10(-13) M VIP. The relevant receptor was verified with specific antagonists, or agonists, semi-quantitative RT-PCR, and chemical cross-linking studies with stromal membranes. RESULTS: Assays performed with unfractionated mononuclear cells and enriched CD34(+) cells showed dose-dependent inhibition on BM progenitors with significant inhibition up to 10(-10) M. Nylon wool separated cells, which depleted stroma, reversed the inhibitory effects of VIP between 10 and 20%. Combined experimental evaluation indicated that the effects of VIP on BM functions are mediated through the type 1 receptor (VPAC1). VIP induced the production of TGF-beta and TNF-alpha in BM mononuclear cells and stroma. These cytokines are partly involved in reversing the suppressive effects of VIP on CFU-GM. CONCLUSIONS: The effect of VIP on BM progenitors could be mediated through direct and indirect mechanism. Direct effects were evident by the suppressive effects of VIP on clonogenic assays with highly purified CD34(+) cells. Indirect effects were mediated through putative functions of the stromal cells and the production of TGF-beta and TNF-alpha.
Assuntos
Células da Medula Óssea/efeitos dos fármacos , Receptores de Peptídeo Intestinal Vasoativo/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Adulto , Células da Medula Óssea/citologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Cocultura , Ensaio de Unidades Formadoras de Colônias , Reagentes de Ligações Cruzadas/farmacologia , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Eritropoetina/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células HL-60/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Interleucina-3/farmacologia , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Receptores de Peptídeo Intestinal Vasoativo/biossíntese , Receptores de Peptídeo Intestinal Vasoativo/genética , Receptores de Peptídeo Intestinal Vasoativo/fisiologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/efeitos dos fármacos , Células Estromais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa/fisiologiaRESUMO
The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis.
Assuntos
Terapia de Alvo Molecular , Receptores da Neurocinina-1/metabolismo , Animais , Humanos , Modelos Biológicos , Receptores da Neurocinina-1/química , Taquicininas/metabolismoRESUMO
BACKGROUND: Substance P (SP) is a pleiotropic cytokine/neuropeptide that enhances breast cancer (BC) aggressiveness by transactivating tyrosine kinase receptors like EGFR and HER2. We previously showed that SP and its cognate receptor NK-1 (SP/NK1-R) signaling modulates the basal phosphorylation of HER2 and EGFR in BC, increasing aggressiveness and drug resistance. In order to elucidate the mechanisms responsible for NK-1R-mediated HER2 and EGFR transactivation, we investigated the involvement of c-Src (a ligand-independent mediator) and of metalloproteinases (ligand-dependent mediators) in HER2/EGFR activation. RESULTS AND DISCUSSION: Overexpression of NK-1R in MDA-MB-231 and its chemical inhibition in SK-BR-3, BT-474 and MDA-MB-468 BC cells significantly modulated c-Src activation, suggesting that this protein is a mediator of NK-1R signaling. In addition, the c-Src inhibitor 4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline prevented SP-induced activation of HER2. On the other hand, SP-dependent phosphorylation of HER2 and EGFR decreased substantially in the presence of the MMP inhibitor 1-10, phenanthroline monohydrate, and the dual inhibition of both c-Src and MMP almost abolished the activation of HER2 and EGFR. Moreover, the use of these inhibitors demonstrated that this Src and MMP-dependent signaling is important to the cell viability and migration capacity of HER2+ and EGFR+ cell lines. CONCLUSION: Our results indicate that the transactivation of HER2 and EGFR by the pro-inflammatory cytokine/neuropeptide SP in BC cells is a c-Src and MMP-dependent process.
Assuntos
Neoplasias da Mama/metabolismo , Receptores ErbB/metabolismo , Metaloproteases/metabolismo , Receptor ErbB-2/metabolismo , Substância P/metabolismo , Quinases da Família src/metabolismo , Neoplasias da Mama/genética , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Feminino , Expressão Gênica , Humanos , Metaloproteases/antagonistas & inibidores , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Fosforilação , Ligação Proteica , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Transativadores/metabolismo , Quinases da Família src/antagonistas & inibidoresRESUMO
Two lineages, epithelial, and myoepithelial cells are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells) and CD10/K14 (myoepithelial cells) antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast cancer.
RESUMO
The enumeration of circulating tumor cells (CTCs) in peripheral blood correlates with clinical outcome in castration-resistant prostate cancer (CRPC). We analyzed the molecular profiling of peripheral blood from 43 metastatic CRPC patients with known CTC content in order to identify genes that may be related to prostate cancer progression. Global gene expression analysis identified the differential expression of 282 genes between samples with ≥5 CTCs vs <5 CTCs, 58.6% of which were previously described as over-expressed in prostate cancer (18.9% in primary tumors and 56.1% in metastasis). Those genes were involved in survival functions such as metabolism, signal transduction, gene expression, cell growth, death, and movement. The expression of selected genes was evaluated by quantitative RT-PCR. This analysis revealed a two-gene model (SELENBP1 and MMP9) with a high significant prognostic ability (HR 6; 95% CI 2.61 - 13.79; P<0.0001). The combination of the two-gene signature plus the CTCs count showed a higher prognostic ability than CTCs enumeration or gene expression alone (P<0.05). This study shows a gene expression profile in PBMNC associated with CTCs count and clinical outcome in metastatic CRPC, describing genes and pathways potentially associated with CRPC progression.
Assuntos
Células Neoplásicas Circulantes/patologia , Neoplasias de Próstata Resistentes à Castração/sangue , Adulto , Idoso , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Análise de SobrevidaRESUMO
Hypoxia is a hallmark of solid tumors that drives malignant progression by altering epigenetic controls. In breast tumors, aberrant DNA methylation is a prevalent epigenetic feature associated with increased risk of metastasis and poor prognosis. However, the mechanism by which hypoxia alters DNA methylation or other epigenetic controls that promote breast malignancy remains poorly understood. We discovered that hypoxia deregulates TET1 and TET3, the enzymes that catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby leading to breast tumor-initiating cell (BTIC) properties. TET1/3 and 5hmC levels were closely associated with tumor hypoxia, tumor malignancy, and poor prognosis in breast cancer patients. Mechanistic investigations showed that hypoxia leads to genome-wide changes in DNA hydroxymethylation associated with upregulation of TNFα expression and activation of its downstream p38-MAPK effector pathway. Coordinate functions of TET1 and TET3 were also required to activate TNFα-p38-MAPK signaling as a response to hypoxia. Our results reveal how signal transduction through the TET-TNFα-p38-MAPK signaling axis is required for the acquisition of BTIC characteristics and tumorigenicity in vitro and in vivo, with potential implications for how to eradicate BTIC as a therapeutic strategy.
Assuntos
Neoplasias da Mama/genética , Hipóxia Celular/fisiologia , Metilação de DNA , Proteínas de Ligação a DNA/fisiologia , Dioxigenases/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , 5-Metilcitosina/análogos & derivados , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Citosina/análogos & derivados , Citosina/biossíntese , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Dioxigenases/biossíntese , Dioxigenases/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Nus , Oxigenases de Função Mista , Dados de Sequência Molecular , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/enzimologia , Prognóstico , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/biossíntese , Estudos Retrospectivos , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genéticaRESUMO
Neurokinin 1 (NK-1) is a member of seven transmembrane G protein-coupled receptors. NK-1 interacts with peptides belonging to the tachykinin family and showed preference for substance P (SP). NK-1 is induced in bone marrow (BM) stroma. NK-1-SP interactions could lead to changes in the functions of lymphohematopoietic stem cell (LHSC). This report describes the cloning and characterization of a cDNA clone isolated after screening of three cDNA libraries with an NK-1-specific probe. Based on its expression, the cDNA clone was designated hematopoietic growth factor inducible neurokinin-1 type (HGFIN). Computational analyses predicted that HGFIN is transmembrane with the carboxyl terminal extracellular. Proteomic studies with purified HGFIN and SP showed noncovalent interactions. HGFIN-SP interactions were supported by transient expression of HGFIN in CHO cells. Transient expression of HGFIN in unstimulated BM fibroblasts led to the induction of endogenous NK-1. Since NK-1 expression in BM fibroblasts requires cell stimulation, these studies suggest that there might be intracellular crosstalk between NK-1 and HGFIN. Northern analyses with total RNA from different BM cell subsets showed that HGFIN was preferentially expressed in differentiated cells. This suggests that HGFIN might be involved in the maturation of LHSC. HGFIN was detected in several other tissues, but not in brain where NK-1 is constitutively expressed.
Assuntos
Fatores de Crescimento de Células Hematopoéticas/metabolismo , Proteínas de Membrana/metabolismo , Substância P/metabolismo , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Células CHO , Diferenciação Celular/fisiologia , Clonagem Molecular , Cricetinae , Sondas de DNA , DNA Complementar/genética , Fibroblastos/metabolismo , Humanos , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , RNA Mensageiro/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência do Ácido Nucleico , Substância P/genética , Distribuição TecidualRESUMO
ERBB receptor transmodulation by heterologous G-protein-coupled receptors (GPCR) generates functional diversity in signal transduction. Tachykinins are neuropeptides and proinflammatory cytokines that promote cell survival and cancer progression by activating several GPCRs. In this work, we found that the pain-associated tachykinin Substance P (SP) contributes to persistent transmodulation of the ERBB receptors, EGFR and HER2, in breast cancer, acting to enhance malignancy and therapeutic resistance. SP and its high-affinity receptor NK-1R were highly expressed in HER2(+) primary breast tumors (relative to the luminal and triple-negative subtypes) and were overall correlated with poor prognosis factors. In breast cancer cell lines and primary cultures derived from breast cancer samples, we found that SP could activate HER2. Conversely, RNA interference-mediated attenuation of NK-1R, or its chemical inhibition, or suppression of overall GPCR-mediated signaling, all strongly decreased steady-state expression of EGFR and HER2, establishing that their basal activity relied upon transdirectional activation by GPCR. Thus, SP exposure affected cellular responses to anti-ERBB therapies. Our work reveals an important oncogenic cooperation between NK-1R and HER2, thereby adding a novel link between inflammation and cancer progression that may be targetable by SP antagonists that have been clinically explored.