Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 15(6): e1008195, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181062

RESUMO

To characterize the consequences of eliminating essential functions needed for peptidoglycan synthesis, we generated deletion mutations of Acinetobacter baylyi by natural transformation and visualized the resulting microcolonies of dead cells. We found that loss of genes required for peptidoglycan precursor synthesis or polymerization led to the formation of polymorphic giant cells with diameters that could exceed ten times normal. Treatment with antibiotics targeting early or late steps of peptidoglycan synthesis also produced giant cells. The giant cells eventually lysed, although they were partially stabilized by osmotic protection. Genome-scale transposon mutant screening (Tn-seq) identified mutations that blocked or accelerated giant cell formation. Among the mutations that blocked the process were those inactivating a function predicted to cleave murein glycan chains (the MltD murein lytic transglycosylase), suggesting that giant cell formation requires MltD hydrolysis of existing peptidoglycan. Among the mutations that accelerated giant cell formation after ß-lactam treatment were those inactivating an enzyme that produces unusual 3->3 peptide cross-links in peptidoglycan (the LdtG L,D-transpeptidase). The mutations may weaken the sacculus and make it more vulnerable to further disruption. Although the study focused on A. baylyi, we found that a pathogenic relative (A. baumannii) also produced giant cells with genetic dependencies overlapping those of A. baylyi. Overall, the analysis defines a genetic pathway for giant cell formation conserved in Acinetobacter species in which independent initiating branches converge to create the unusual cells.


Assuntos
Acinetobacter/genética , Genes Essenciais/genética , Glicosiltransferases/genética , Peptidoglicano/genética , Acinetobacter/enzimologia , Antibacterianos/biossíntese , Ciclo Celular/genética , Divisão Celular/genética , Parede Celular/enzimologia , Parede Celular/genética , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Deleção de Genes , Genoma Bacteriano/genética , Peptidoglicano/biossíntese , Peptidil Transferases/genética , Deleção de Sequência/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-29439964

RESUMO

Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust ß-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , beta-Lactamas/farmacologia , Meropeném/farmacologia , Peptidoglicano/metabolismo
3.
J Bacteriol ; 199(20)2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760848

RESUMO

Klebsiella pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are a major cause of hospital-acquired infections, yet the basis of their success as nosocomial pathogens is poorly understood. To help provide a foundation for genetic analysis of K. pneumoniae, we created an arrayed, sequence-defined transposon mutant library of an isolate from the 2011 outbreak of infections at the U.S. National Institutes of Health Clinical Center. The library is made up of 12,000 individually arrayed mutants of a carbapenemase deletion parent strain and provides coverage of 85% of the predicted genes. The library includes an average of 2.5 mutants per gene, with most insertion locations identified and confirmed in two independent rounds of Sanger sequencing. On the basis of an independent transposon sequencing assay, about half of the genes lacking representatives in this "two-allele" library are essential for growth on nutrient agar. To validate the use of the library for phenotyping, we screened candidate mutants for increased antibiotic sensitivity by using custom phenotypic microarray plates. This screening identified several mutations increasing sensitivity to ß-lactams (in acrB1, mcrB, ompR, phoP1, and slt1) and found that two-component regulator cpxAR mutations increased multiple sensitivities (to an aminoglycoside, a fluoroquinolone, and several ß-lactams). Strains making up the two-allele mutant library are available through a web-based request mechanism.IMPORTANCE K. pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are recognized as a top public health threat by the Centers for Disease Control and Prevention. The analysis of these major nosocomial pathogens has been limited by the experimental resources available for studying them. The work presented here describes a sequence-defined mutant library of a K. pneumoniae strain (KPNIH1) that represents an attractive model for studies of this pathogen because it is a recent isolate of the major sequence type that causes infection, the epidemiology of the outbreak it caused is well characterized, and an annotated genome sequence is available. The ready availability of defined mutants deficient in nearly all of the nonessential genes of the model strain should facilitate the genetic dissection of complex traits like pathogenesis and antibiotic resistance.

4.
PLoS Genet ; 5(7): e1000570, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19629160

RESUMO

Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female-male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation.


Assuntos
Proteínas do Ovo/genética , Evolução Molecular , Gastrópodes/genética , Mucoproteínas/genética , Receptores de Superfície Celular/genética , Animais , Proteínas do Ovo/metabolismo , Feminino , Fertilização , Gastrópodes/metabolismo , Especiação Genética , Masculino , Mucoproteínas/metabolismo , Polimorfismo Genético , Receptores de Superfície Celular/metabolismo
5.
Am J Hum Genet ; 79(5): 820-30, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17033959

RESUMO

A hallmark of positive selection (adaptive evolution) in protein-coding regions is a d(N)/d(S) ratio >1, where d(N) is the number of nonsynonymous substitutions/nonsynonymous sites and d(S) is the number of synonymous substitutions/synonymous sites. Zonadhesin is a male reproductive protein localized on the sperm head, comprising many domains known to be involved in cell-cell interaction or cell adhesion. Previous studies have shown that VWD domains (homologous to the D domains of the von Willebrand factor) are involved directly in binding to the female zona pellucida (ZP) in a species-specific manner. In this study, we sequenced 47 coding exons in 12 primate species and, by using maximum-likelihood methods to determine sites under positive selection, we show that VWD2, membrane/A5 antigen mu receptor, and mucin-like domains in zonadhesin are rapidly evolving and, thus, may be involved in binding to the ZP in a species-specific manner in primates. In addition, polymorphism data from 48 human individuals revealed significant polymorphism-to-divergence heterogeneity and a significant departure from equilibrium-neutral expectations in the frequency spectrum, suggesting balancing selection and positive selection occurring in zonadhesin (ZAN) within human populations. Finally, we observe adaptive evolution in haplotypes segregating for a frameshift mutation that was previously thought to indicate that ZAN was a potential pseudogene.


Assuntos
Evolução Molecular , Proteínas de Membrana/genética , Animais , Éxons , Feminino , Genética Populacional , Humanos , Íntrons , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Primatas/genética , Estrutura Terciária de Proteína , Seleção Genética , Especificidade da Espécie , Espermatozoides/química , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA